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Abstract Evolutionary multi-objective optimization algo-
rithms are generally employed to generate Pareto optimal
solutions by exploring the search space. To enhance the per-
formance, exploration by global search can be complemented
with exploitation by combining it with local search. In this
paper, we address the issues in integrating local search with
global search such as: how to select individuals for local
search; how deep the local search is performed; how to com-
binemultiple objectives into single objective for local search.
We introduce a Preferential Local Search mechanism to fine
tune the global optimal solutions further and an adaptive
weight mechanism for combining multi-objectives together.
These ideas have been integrated into NSGA-II to arrive at a
newmemetic algorithm for solvingmulti-objective optimiza-
tion problems. The proposed algorithm has been applied on a
set of constrained and unconstrained multi-objective bench-
mark test suite. The performancewas analyzed by computing
different metrics such as Generational distance, Spread, Max
spread, and HyperVolume Ratio for the test suite functions.
Statistical test applied on the results obtained suggests that
the proposed algorithm outperforms the state-of-art multi-
objective algorithms like NSGA-II and SPEA2. To study
the performance of our algorithm on a real-world applica-
tion, Economic Emission Load Dispatch was also taken up
for validation. The performance was studied with the help
of measures such as Hypervolume and Set Coverage Met-
rics. Experimental results substantiate that our algorithm has
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the capability to solve real-world problems like Economic
Emission Load Dispatch and is able to produce better solu-
tions,when comparedwithNSGA-II, SPEA2, and traditional
memetic algorithms with fixed local search steps.
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1 Introduction

Many of the real-world problems like scheduling, resource
allocation, aerodynamic design, supply chain management,
microprocessor chip design, mechanical component design,
and medical image reconstruction (Bagchi 1999; Cheng and
Li 1997; Joines et al. 2002; Aguilar and Miranda 1999; Deb
2001) havemultiple competing objectives to optimize. These
are called multi-objective optimization problems (MOOPs),
where the objectives need to be simultaneously optimized.
Almost all of these real-worldmulti-objective problems have
constraints that are to be satisfied. A constrained multi-
objective optimization problem with M objectives is formu-
lated as,

Minimize/maximize fm(x), m = 1, 2, . . . , M;
subject to g j (x) ≤ 0, j = 1, 2, . . . , J ;
hk(x) = 0, k = 1, 2, . . . , K ;
x (L)
i ≤ xi ≤ x (U )

i i = 1, 2, . . . , I ;

⎫
⎪⎪⎬

⎪⎪⎭

(1)

There are J inequality and K equality constraints with I
decision variables in the above equation. Constrained multi-
objective problems divide the search space into two regions
as feasible and infeasible regions (Deb 2001). Solution x (i)

that satisfies all the constraints is a feasible solution.
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Multi-objective optimization problems require a set of
Pareto optimal solutions rather than a single optimal solution.
These Pareto optimal solutions exhibit a trade-off among the
objectives (Coello 2000; Konak et al. 2006) and are non-
dominating in nature. A solution x is said to dominate another
solution y, when it is not worse than y in all objectives and
strictly better than y in at least one objective (Deb 2001). If
x does not dominate y and y does not dominate x, then x
and y are non-dominant solutions. Such solutions are Pareto
optimal and are not dominated by any other solution in the
population. For a Pareto optimal solution, improvement in
one objective of the solution will worsen at least one of the
other objectives. Objective values corresponding to Pareto
optimal solutions form Pareto optimal front in the objective
space.

The goals of any multi-objective optimization algo-
rithm that solves a MOOP are to converge towards opti-
mal front and to generate uniformly spread solutions across
the Pareto front in low computation time (Zitzler et al.
2000; Mostaghim 2004). Multi-objective evolutionary algo-
rithms (MOEAs) (Fonseca and Fleming 1995) are widely
used for solving MOOPs. Evolutionary algorithms inher-
ently deal with a population of solutions and have the ability
to generate a set of optimal solutions while solving mul-
tiple objectives. Genetic Algorithm (GA) (Holland 1975;
Goldberg 1989) is one kind of evolutionary algorithm that
performs a stochastic search and imitates the evolution of
nature. Genetic Algorithms are designed to explore the entire
search space and generate Pareto optimal solution set when
used to optimize multiple contradicting objectives. Genetic
Algorithms are broadly categorized under global search
algorithms.

Multi-objective evolutionary algorithms are generally
classified into elitist and nonelitist algorithms with respect
to whether any explicit measures are taken to retain potential
solutions or not. Several nonelitist and elitist algorithms have
been reported so far. VEGA (Schaffer 1985), MOGA (Fon-
seca and Fleming 1993), NPGA (Horn et al. 1994), NSGA
(Srinivas and Deb 1994), and WBGA (Hajela and Lin 1992)
are a few of the nonelitist multi-objective evolutionary algo-
rithms, whereas NSGA-II (Deb et al. 2000, 2002), SPEA
(Zitzler and Thiele 1999), SPEA2 (Zitzler et al. 2001), and
PAES (Knowles andCorne 2000) are someof thewidely used
elitist multi-objective evolutionary algorithms. A detailed
survey of such algorithms can be found in Konak et al.
(2006), Coello and Zacatenco (2006), Coello (2000), and
Coello (2002).

Advantages of evolutionary algorithms (EAs) are many
when compared with other optimization algorithms. They
are simple, are easy to customize, have wide range of appli-
cations, are suitable for complex search spaces, and can
outperform classical techniques for optimization (Blickle
1996). Despite having advantages, EAs have a few draw-

backs such as lack of fine tuning the solutions in the search
space (Krasnogor and Smith 2005) and premature conver-
gence (McGinley et al. 2011). To overcome these drawbacks,
a global search algorithm like GA can be combined with a
local search procedure resulting in memetic algorithm (MA)
(Moscato 1989) or hybrid algorithm. Performance of any
search algorithm can be enhanced further by combining with
other search algorithms, by accelerating the nature of prob-
lem solving (Ong et al. 2010). GAs can be easily combined
with any other traditional optimization techniques (Fogel
1995; Abraham 2005). This kind of integration of two differ-
ent search procedures will improve the search performance
of the hybrid algorithm. The research issues to be considered
while integrating two search procedures are (Ong et al. 2010;
Krasnogor and Smith 2005):

– Whether all the individuals or only a few individuals are
chosen for local search;

– How often a local search can be applied;
– How deep a local search is allowed;
– How multi-objectives can be converted into a single
objective for performing local search.

Our proposed algorithm addresses the abovelisted issues
by preferentially selecting individuals on the basis of their
potential, limiting the number of local searches applied,
facilitating iterative deepening of search and using a new
adaptive weight scheme for combining multiple objectives
into a single one. These ideas have been incorporated into
the existing NSGA-II algorithm arriving at a new algorithm
called memetic algorithm with Preferential Local Search
using adaptive weights (MAPLS-AW).

Performance of the proposed algorithm has been evalu-
ated on constrained and unconstrained benchmark test prob-
lems using fourmetrics: Generational Distance, Spread,Max
spread and HyperVolume Ratio. The proposed algorithm has
also been applied on Economic Emission Load Dispatch
(EELD), a real-world application and performance was eval-
uated using Hypervolume metric and Set Coverage Metrics.
The results observed show that MAPLS-AW performs better
than NSGA-II, SPEA2, and traditional memetic algorithms
with fixed local search steps.

This paper is organized as follows. Section 2 gives rest of
background and presents various issues in designing hybrid
search algorithms. Proposed algorithm MAPLS-AW is pre-
sented in Sect. 3. Section 4 summarizes the details of imple-
mentation and experiments conducted along with discussion
of results. Application of proposed MAPLS-AW on a real-
world problem, EELD, is discussed in Sect. 5. Section 6 gives
the conclusion of the proposed algorithm with future direc-
tions.
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2 Background and related works

2.1 Multi-objective optimization

Conventionally,multi-objective problems are solved by com-
bining multiple objectives into a single objective. Classical
aggregation methods such as weighted sum, value function,
and ε-constraint method generate single optimal solution per
run. To obtain a set of Pareto optimal solutions, a classical
optimization method has to be repeatedly executed with dif-
ferent parameters. Several algorithms have been developed to
simultaneously solve multiple objectives in order to generate
a set of Pareto optimal solutions. The generated Pareto opti-
mal solutions should be close to the optimal front and also
be uniformly distributed across the Pareto front by exploring
the extreme regions of the search space (Konak et al. 2006).

Evolutionary GA is a nature inspired computation strat-
egy that imitates the evolutionary process. Each individual
in GA is called a chromosome that carries distinct elements
called genes. To solve an optimization problem using GA,
the first essential step is to encode the solutions into chro-
mosomes. Several different encoding schemes are available
to represent the solutions, such as binary encoding, value
encoding, real encoding, and permutation encoding. Select-
ing a specific encoding technique depends on the problem to
be solved. Binary encoding (Goldberg 1989) is themost com-
mon representation used to encode chromosomes and has got
a variety of applications. When some real-world problems
require real values to encode decision parameters, real cod-
ing scheme finds its use (Herrera et al. 1998). A collection of
chromosomes forms the population. With iterative applica-
tion of genetic operators such as crossover and mutation on
selected solutions evolves the population towards the optimal
solutions.

As GAs are designed to work with population of solu-
tions, they are suitable to solve multi-objective problems.
Suchmulti-objectiveGAs differ in theirworkingwith respect
to Pareto ranking principle or fitness sharing strategy. Most
of the recent GAs use elitism to preserve the elite solutions
(Coello andZacatenco2006). Twomethods havebeenused to
employ elitism. They are maintaining an elite population set
and maintaining a separate archive for elite solutions which
will be used during the evolution. NSGA-II is an elitist multi-
objective GA that preserves elitist solutions in the population
itself. This algorithm remains as one of widely usedMOEAs,
due to its effective performance (Coello and Zacatenco 2006)
and hence we have decided to adapt NSGA-II for our pro-
posed work.

NSGA-II is a ranking-based evolutionary algorithmwhich
has measures to maintain elitism and preserve the diversity
of solutions. Once the population is initialized with random
solutions, the population is sorted into different ranks using
non-dominated sorting method. Individuals in the same rank

are placed in the same front. NSGA-II uses the crowded sort-
ing operator for selecting an individual from the same front.
This operator sorts the individuals in the same rank with
respect to the density of surrounding solutions. A solution
from less dense space is given the highest preference for
selection (Deb et al. 2002). This feature is one that explicitly
maintains the Spread of optimal solutions.

The Pareto optimal solutions generated by the optimiza-
tion process should be from the feasible region of search
space. In such case, the selection procedure in the evolution-
ary cycle needs to select feasible solutions from the search
space. Constrained binary tournament selection (Deb 2001)
is one such selection procedure used in constrained optimiza-
tion problems. Two solutions say x and y are chosen at ran-
dom from the population.

– If x and y both are feasible solutions and are in different
ranks, a solution with better rank is selected. If both solu-
tions are in same rank then a solution from less crowded
space will be selected.

– If one out of x and y is feasible and other is an infeasible
solution, then a feasible solution is selected.

– If x and y, both are infeasible solutions then the one with
less constraint violation will be selected.

NSGA-II calls the above procedure as crowded comparison
operator.

Crossover and its characteristics

The primary search operator that explores the search space in
the nature inspired evolutionary algorithms is the crossover
operator (De Jong and Spears 1992; Črepinšek et al. 2013).
Crossover operation determines the extent of exploration
to be performed in the search space. Search space can be
divided into exploration zone and exploitation zone (Herrera
et al. 2003). When similar parents undergo crossover they
lead to exploitation of the region than exploration. McGin-
ley et al. (2011) introduces an adaptive crossover by vary-
ing the crossover probability. Two different measures such
as Standard Population Diversity (SPD) and Healthy Pop-
ulation Diversity (HPD) are used for crossover adaptation
thereby to improve the diversity of the population.

Simulated binary crossover (SBX) (Deb andKumar 1995;
Deb and Agrawal 1995) is one of real-coded crossover oper-
ators. This has the same search ability as that of single-point
binary crossover. If P1 and P2 are the two parents selected
for SBX crossover, new offspring say C1 and C2 will be
generated as per the following procedure: A random value
u between 0 and 1 is selected. β, the Spread factor is cal-
culated with respect to u value. If u is less than 0.5 then
β = (2∗u)1/ηc+1 otherwise β = 1/(2∗ (1−u)1/ηc+1). ηc is
the distribution factor that decides whether children should
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be generated nearer to the parents or not. Higher the value of
ηc closer the children to the parents otherwise they will be
generated far away from the parents.

C1 = 0.5 ∗ [(P1 + P2) − β ∗ | P2 − P1 |]
C2 = 0.5 ∗ [(P1 + P2) + β ∗ | P2 − P1 |] (2)

Balanced exploration and exploitation (Črepinšek et al.
2013) always generate diverse set of good quality solutions.
Values suggested inDeb et al. (2002) for distribution parame-
ter ηc is between 5 and 20. To achieve maximum exploration
of search space, we decided to eliminate the need of this para-
meter in our proposed work. By reducing the significance of
ηc, the extreme regions of the search space can be explored.
The new offspring will be generated in the unexplored areas
of the search space.

To introduce diversity at gene level, mutation is performed
on the new offspring and not all the offspring will undergo
mutation. High mutation rate will affect the probability of
getting the global optimum and hence always limited to a
lesser value (Weise 2009). Polynomial mutation is the kind
of mutation used by real-coded GAs which tries to simulate
the binary mutation. Polynomial mutation, mutates the new
offspring as follows. A newmutated individual Yi is given by

Yi = xi + (xUi − x Li ) ∗ δi (3)

where xi is the i th parameter selected with mutation proba-
bility pm , xUi and x Li are the lower and upper bounds of xi ,
respectively. Mutation probability pm is usually set to 1/n,
where n is the number of decision parameters in the multi-
objective problem (Deb and Goyal 1996). δi is given by

δi =
{

(2ri )
1/ηm+1 − 1 if ri ≤ 0.5,

1 − (2(1 − ri ))
1/ηm+1 − 1 if ri ≥ 0.5.

(4)

where ri takes a random value between [0,1] and ηm , the
mutation constant is any non-negative real number. As a
measure to impose elitism, NSGA-II combines the parent
solutions with new offspring and non-dominated sorting is
applied on the combined population. We have used the tem-
plate of NSGA-II to fit in the design of our proposed algo-
rithm.

Another kind of elitist multi-objective Evolutionary Algo-
rithm where an external archive of non-dominating solutions
is maintained is Strength Pareto Evolutionary Algorithm 2
(SPEA2) (Zitzler et al. 2001). It is different from its prede-
cessor SPEA, in terms of fitness assignment, density estima-
tion and truncation operations (Guliashki et al. 2009). The
size of external archive can be set as same as that of pop-
ulation size or may be different. When the number of non-
dominating solutions exceeds the size of archive, they are
truncated with respect to a procedure similar to kth nearest

neighbor. Fitness of any individual in this algorithm does
not solely depend on the functional objective, but also on a
strength value of dominated individuals and density infor-
mation. NSGA-II and SPEA2 are the two most widely used
elitist MOEAs in the literature (Zhou et al. 2011). The per-
formance of our proposed algorithm has been compared with
these two state-of-art algorithms.

2.2 Local optimization

Local search method is one of the metaheuristic techniques
which is otherwise referred to as trajectory method or itera-
tive improvement method. Local optimization or local search
techniques start with an initial solution and search its neigh-
borhood (Gaspero 2003; Blum and Roli 2003), by applying
changes to the current solution. The new solution will be
accepted if it is better than the previous one and by this man-
ner an initial solution is enhanced through local optimization.

Local search techniques can be classified into derivative
and nonderivative techniques (Jang et al. 2004). Nonderiva-
tive methods are simplex method (Nelder and Mead 1965),
tabu search (Glover and Laguna 1997), etc, and derivative
techniques include Gradient descent methods and Newton
methods. Nonderivative methods rely on objective function
to guide the search process (Deb 2001), whereas the deriv-
ative methods make use of gradient information from the
objective space to decide the search direction.

Steepest descent or Gradient descent is one of the
derivative-based algorithms which, ‘begins with an initial
solution and repeatedly subtracts a fraction of locally cal-
culated gradient from the current solution’ (Salomon 1998).
That is, the new solution xk+1 is obtained by the following
equation.

xk+1 = xk + λdk (5)

where x ∈ R, λ is the step size. Descent direction is given by
dk = − � f (xk), where f is the function to be optimized.

Issues in scalarizing objectives

Local search requires the multiple objectives to be converted
into a single objective.Weighted sum approach (Zadeh 1963;
Koski 1988; Coello 2000) is one among themost widely used
classical aggregating methods. Weighted sum optimization
scalarizes the objectives such that the sum of the weights
should be equal to 1, i.e.,

∑M
i Wi = 1, where M is the

number of objectives. The decision for providing different
weights to the objectives depends on the importance of the
objectives in the optimization problem. Here are the possi-
ble ways one can assign weights to the objectives Case a:
Knowing the preferences or the significance of each of the
objectives in the problem, the decision maker can assign the
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weights to the objectives. This is themost simplest or reason-
able way of using the weighted summethod. Multi-objective
real-world applications are mostly optimized by this method
of accepting user given preferences.

Case b:But one may not always know the significance of the
objectives. In that case, following are the options that can be
used.

Case b.1: Assign random weights to the objectives. The
uncertainty in the weights will affect the direction of opti-
mization and also the time taken to converge towards the
optimal solutions.

Case b.2: Provide equal weights to all the objectives (Steuer
1986;Bhuvana andAravindan 2011a).An objective that does
not deserve to get equal weight as others will mislead the
optimization process. That is, the equal weight will help the
optimization process towards wrong direction and hence will
consume more than expected time to converge towards the
optimal solution. Another aspect is the weights assigned will
remain fixed during the entire evolution and may also have
its impact over the diversity of solutions obtained.

Case b.3: Using adaptive weights for the objectives is
the other way of weight assignment. Adaptive weights are
weights that change across the iterations with respect to geo-
metric nature of the Pareto front (Kim and De Weck 2005;
Jiang et al. 2011) and with the help of nadir and utopia points
(Gen and Lin 2005). Hamada et al. (2010) uses one weighted
scalarization method, where the initial point and the weight
decide the convergence. Weight is randomly generated ini-
tially for each point in the search space and no weight adap-
tation performed for first iteration. The weights are assigned
as the midpoint between solutions using subdivision method
for the new search points. The solution is optimized for the
new weight and repeated until the movement between points
is too short. Scalability (Hamada et al. 2010) is limited to
six or seven objectives, since the number of search points
increases exponentially with respect to the number of objec-
tives. Above drawback was overcome using barycentric sub-
division and new weight adaptation scheme in Hamada et al.
(2011). In Li and Landa-Silva (2008) adaptive weights are
assigned according to their nearness to non-dominated neigh-
boring solution in the population. In general, the weighted
sum aggregation approach has its own set of drawbacks.
Jubril (2012) discusses the drawbacks of weighted sum such
as:

1. Missing the nonconvex surface of Pareto front.
2. Diversity is not controlled.
3. Distribution depends on relative scaling of objectives.

Proposed algorithm has introduced one form of adaptive
weights for scalarizing the objectives before performing the

local search. This adaptive weight strategy is scalable and
hence not affected by increasing the number of objectives.
Our adaptive weight assignment neither depends on the geo-
metric nature of Pareto front, since it is not known in advance,
nor it relies on the nadir or utopia points. Our proposed
adaptive weight assignment algorithm overcomes the draw-
backs listed earlier. The obtained results confirm that our
proposed algorithm is not affected by any of the listed draw-
backs.

2.3 Hybridization of evolutionary algorithms:

In MAs, the memes refer to the ‘unit of cultural evolution’
(Ong et al. 2006) that enhances or fine tunes an individual by
a separate procedure. Therefore, the GA will be responsible
for the exploration and the local search will take care of
exploitation of local neighborhood. The main advantage of
hybridization of Genetic Algorithms is to prevent premature
convergence of optimization process (El-Mihoub et al. 2006).
Memetic algorithms can be classified according to the types
of algorithms used, level of hybridizations applied and type
of inheritance performed. A survey about such classification
can be found in Chen et al. (2011).

Challenges and issues in combining global and local
search algorithms have been mentioned in Sect. 1. Local
search (LS) is itself a separate optimization process andwhen
it is embedded into another algorithm, the complexity of the
procedure significantly increases. To reduce the complexity
of the hybrid algorithm few solutions have been identified
so far. LS cannot be applied on all individuals always and
requires some selection strategy for filtering the individuals
which can undergo the local search (Krasnogor and Smith
2005; Mongus et al. 2012). The frequency of performing
local optimization during the evolutionary cycle needs to be
decided. When the LS is applied on individuals, how deep
the local optimization be allowed is one important issue to
be addressed. Performing LS till every solution reaches the
optimal value will definitely have its impact on total time
consumed by the procedure. To overcome this, if the number
of LS steps taken is restricted, then the fine tuning of good
individuals may not happen. This requires a balanced and
optimal way of integrating LS into EA to generate optimal
solutions.

Having identified major issues while embedding a LS into
EA, our paper proposes a memetic approach addressing how
deep a local search can be applied in an optimal manner
and what set of population can undergo the local search.
The proposed algorithm also addresses how the weights can
be assigned in an adaptive manner before applying LS. In
our proposed algorithm the global search is performed by
NSGA-II and local search is performed by steepest descent
method.
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3 Proposed algorithm

3.1 Design of memetic algorithm

The goal of memetic algorithm is to generate quality solu-
tions by combining global and local search together. The
purpose of combining two different search processes is to
perform exploration of the search space and exploitation
of the neighborhood locality. Issues related to combining
global search and local search have been listed and dis-
cussed in the previous section. Two major proposals in this
paper are adaptive weight assignment scheme for perform-
ing local search and Preferential Local Search. These two key
ideas can be incorporated into any of the global search algo-
rithms to arrive at a new memetic algorithm. In this paper,
we have integrated the above two approaches into NSGA-II
arriving at a new algorithm, MAPLS-AW. Balance should
be maintained, when a global search is integrated with a
local search process. Our proposed algorithm maintains that
balance between exploration and exploitation through pref-
erential local search and using adaptive weight assignment
scheme. Due to this, the explicit exploration parameter, ηc in
Simulated binary crossover used by NSGA-II is not needed.
We have eliminated the need of that parameter in our pro-
posed algorithm and kept ηc as a constant. In the follow-
ing subsections, we have introduced the working of adaptive
weight assignment and Preferential Local Search.

3.2 Adaptive weights

Using the weighted sum method, multi-objectives are com-
bined together into single objective before the local opti-
mization process is performed. This requires the weights to
be assigned to the functional objectives. An adaptive weight
mechanism has been introduced in this paper that dynami-
cally adapts weights for the objectives.

Multi-objective problems with minimizing objectives are
considered in this work, since anymaximization problem can
be converted (Runarsson and Yao 2000) into minimization
problem.

Different cases of assigning weights have been discussed
in Sect. 2.2. Uniformly distributed optimal solutions are the
solutions expected out of the evolutionary process, where
providing equal weights will affect the diversity of solu-
tions obtained. Equal weights may never explore the extreme
regions of the optimal front. Hence, we have decided to
provide weights for the multiple objectives in an adaptive
manner (Bhuvana and Aravindan 2011b). Classical aggre-
gation techniques aggregate the objectives before the evo-
lution begins and also does it only once. We are proposing
a new aggregation method that aggregates during evolution
and it is prudent to use information available in the objective
space.

Adaptive weights are assigned by collecting information
about a solution from its multidimensional objective space.
Weights computed from these functional values will keep on
changing during the course of evolutionary process.

The aim is to provide lesser preference for any objective
which has larger functional value in a minimization prob-
lem. Higher preference can be given to sustain a lesser func-
tional objective and vice versa. While associating weight in
this manner to one objective function, we need to consider
other objectives at the same time. If we do not consider other
objectives then the evolution may take the solutions towards
one particular region and make them crowded. This will
affect the diversity of optimal solutions. Instead, we need
to move an objective functional value towards its optimal
minimum with respect to every other functional objectives
in the search space. By this a solution is shifted proportion-
ately towards the Pareto optimal. Proportionate movement
in the objective space is achieved with the help of Euclidean
norm.

If f (x)
i is the i th functional objective of a solution x, then

the proportionate movement is given by ωi .

ωi = f (x)
i

‖ f (x)‖ (6)

where ‖ f (x)‖, the Euclidean norm is given by

‖ f (x)‖ =
√

f 2
(x)

1 + f 2
(x)

2 + f 2
(x)

3 + · · · + f 2
(x)

M (7)

Since sum of weights in the weighted sum aggregation
approach should be equal to 1, following scaling of ωi is
done:

αi = ωi
∑M

i=1 ωi
(8)

Once the individual weights are determined for all the objec-
tives, they are combined together into a single objective F
and is given by,

F = α1 f1 + α2 f2 + α3 f3 + · · · + αM fM (9)

where the sum of the weights, α1+α2+α3+· · ·+αM = 1.
Local search applied after such dynamic weight adapta-

tion will overcome the drawbacks, such as convergence time,
taking optimization in the wrong direction and diversity of
obtained optimal solutions.

3.3 Preferential Local Search (PLS)

The objective of integrating a local search in a global search
process is to enhance the quality of solutions by fine tun-
ing them. To establish a balance between exploration and
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Algorithm 1 Algorithm for Preferential Local Search(PLS)
1: procedure Pre f erential_Local_Search(I nput_Solution Iold )
2: � Procedure to compute one-step Preferential Local Search to improve Iold to Inew
3: for i ← 1 toM do � M, the number of objectives
4: Compute proportionate weight ωi with respect to Iold , using Eq. 6
5: Compute adaptive weight αi with respect to Iold using equation 8.
6: end for
7: Construct Single objective function F using Eq. 9.
8: Compute local gradient �F of Iold
9: Identify new neighbor individual, Inew using Eq. 5
10: Evaluate Fitness(Inew)
11: if ( Inew is better than Iold ) then
12: return Inew
13: else
14: return Iold
15: end if
16: end procedure

exploitation, we are proposing Preferential Local Search
(PLS). PLS addresses the issues related to combining global
and local searches together. Issues addressed by PLS are
choosing individuals for local search, deciding the depth
of local search and determining the frequency of local
search.

Choosing individuals for LS

Time incurred in allowing all the individuals for local search
adds to the complexity of the memetic algorithm. Decision
should bemade to selectively allow a few for the local search.
An individual in the population can be passed on to next gen-
eration onlywhen it has potential enough to survive and com-
pete with other peer solutions and offspring. In any i th gener-
ation where the population is a mix of varied set of solutions,
PLS identifies the elite solutions. Preference can be given
to such elite solutions to undergo local search (Krasnogor
and Smith 2005; Mongus et al. 2012). These kinds of pref-
erences to good solutions strengthen them to counter new
offspring.

The offspring that are generated after the genetic opera-
tions may loose their chance in the evolution when compete
with the potential parents. PLS selects the new offspring for
depth-limited local search.That is, each solutionwill undergo
at least one depth limited local search once they are newly
generated. If they survive next generation, and has the poten-
tial to optimize further, local search will be deepened fur-
ther.

Depth of LS

PLS is designed in such away to limit the depth of local
search, that is, potential solutions will undergo depth-limited
LS. Depth of LS is determined by predetermined number of
steps. If potential solutions survive the next generation, local
search will be deepened further. This way the local search is

continued and iteratively deepened on good solutions across
generations. Lesser the potential of one candidate solution,
lesser the depth of local searches applied on it. Greater the
potential, deeper will be the local search applied on that solu-
tion across generations. The potential of a candidate depends
on the fitness of that individual, which is associated with
both exploration of the search space and exploitation of its
neighborhood.Wedecided to use the steepest descent as local
searchmethod, since it suits the decision of limiting the depth
of applying local search.

Thus PLS chooses individuals for depth-limited local
search and fine tunes them. This fine tuning spreads across
generations and iteratively deepens. These steps are collec-
tively referred to as Preferential Local Search. Algorithm for
PLS incorporating the adaptive weight computation is given
in Algorithm 1.

3.4 Memetic algorithm with Preferential Local Search
using adaptive weights (MAPLS-AW)

Having defined the adaptive weight (AW) procedure and the
concept of Preferential Local Search (PLS), the actual pro-
posed approach, memetic algorithm with Preferential Local
Search using Adaptive Weights (MAPLS-AW), is given
below. These two ideas are incorporated into NSGA-II and
MAPLS-AWhas been arrived at. Detailed procedure is given
in Algorithm 2.

MAPLS-AW begins with random initialization of popula-
tion according to problem specific boundary constraints. Fit-
ness of every individual is evaluated and non-dominated sort-
ing is applied. Crowding distance is computed for every indi-
vidual. This distance helps in selecting individuals from less
crowded region and maintains diversity of solutions across
the Pareto front. Binary tournament selection chooses the
parents and SBX crossover is applied to generate new off-
spring. In SBX crossover, the distribution parameter is nul-
lified to explore the vast search space. Polynomial mutation
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Algorithm 2 Memetic algorithm with Preferential Local Search using Adaptive weights
(MAPLS-AW)
1: procedure MAPLS- AW
2: � Pc is the current population of size P, FE is number of Fitness Evaluations, Ei is an Elite solution, O is the

set of new offsprings
3: Initialize the population to size P
4: Evaluate Fitness for every individual in population
5: FE ← P � Initialize the fitness evaluations count
6: Apply non-dominated sorting.
7: Compute Crowding Distance
8: while FE < FEMAX do
9: O ← {} � Initialize the set of Offspring to empty
10: for k ← 1 to P/2 do
11: Select Parents using Binary Tournament.
12: Apply SBX with nullified ηc to generate two new offsprings O1 and O2
13: Apply Polynomial Mutation on both O1 and O2 with probability, pm = 1/ n
14: � n is the number of decision parameters
15: for j ← 1 to 2 do
16: Oj ← Pre f erential_Local_Search(Oj )
17: FE ← FE + 1 � Update the number of FEs
18: O ← O ∪ {Oj }
19: end for
20: end for
21: Pc ← Pc ∪ O
22: Apply non-dominated sorting and shrink the population size to P
23: Compute Crowding Distance
24: Identify elite solutions,< E1, E2, . . . , Es >

25: for i ← 1 to s do
26: Ei ← Pre f erential_Local_Search(Ei )
27: FE ← FE + 1 � Update the number of FEs
28: end for
29: end while
30: end procedure

with respect to mutation probability modifies the new off-
spring. Single-step Preferential Local Search is applied on
the new offsprings. These locally optimized individuals are
nowmergedwith the parent population.Non-dominated sort-
ing is applied on combinedpopulation and it is resized tomeet
the population size. Crowding distance is computed for the
resized population. MAPLS-AW now identifies the elite or
best individuals in the current population which will undergo
Preferential Local Search (PLS). To apply PLS, the objec-
tives of the individual are combined into single using Eq.
(9). To combine the objectives using weighted sum method,
the adaptive weights are calculated. LS will be continued
on the same individual in the next generation if it is com-
petent enough to survive. Fitness for the new individual is
computed and replaces the original one in population. Steps
from selection are repeated until maximum fitness evalua-
tions reached. MAPLS-AW performs both exploration and
exploitation in a balanced manner by nullifying the distri-
bution parameter in the SBX crossover and by Preferential
Local Search. MAPLS-AW computes the fitness only when
a new individual is added to the population. By design of
the algorithm, MAPLS-AW reduces the computation over-
head of traditional memetic algorithm by limiting the depth
of local search.

4 Implementation and experiments

To assess the performance of our proposed memetic algo-
rithm with Preferential Local Search using adaptive weight
(MAPLS-AW), we have carried out several experiments.
Experimental results have been evaluated in comparison
with other MOEAs. This section presents implementation
details of MAPLS-AW, few variants, control parameters
used, benchmark test functions, and performance criteria
used for evaluation. Our proposed algorithm, MAPLS-AW,
has adapted NSGA-II as its global search heuristic procedure
and steepest descent as the local search procedure. We have
followed the guidelines suggested in Črepinšek et al. (2012,
2014) to conduct the experiments in this work.

4.1 Parameters used

Initial population for the benchmark test problems are ran-
domly generated. These random values are generated with
respect to the boundary constraints of the decision parame-
ters of a chosen benchmark test problem. The population size
is set to 50. Termination condition has been fixed as 25000
fitness evaluations for all the variants of search algorithm.
For the depth-limited Preferential Local Search, the step size
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Table 1 Memetic algorithm control parameters

Parameter Value

Category Elitist MOEA

Population size 50

Termination criteria 25,000 fitness evaluations

Coding Real-coded decimal representation

Selection Constrained binary tournament

Crossover probability 1

Crossover SBX crossover

With distribution index 1

Mutation probability 1/Number of variables

Mutation Polynomial mutation

Step size, λ 0.001

Number of runs 50

is 0.001 and the depth of LS is set to 1. In order to compare
the performance, we have used the same initial population for
all the variants of the search algorithm. To observe the con-
sistency in performance of the algorithms, all the implemen-
tations are run for 50 times with different initial population
and the mean of results is reported here. Other parameters
used for implementation are given in Table 1.

4.2 Validation on benchmark problems

20 multi-objective benchmark test problems were used to
validate our work. These are the test problems for which
the optimal solutions are already known. To demonstrate the
superiority of an EA over other algorithms, the new algo-
rithm is applied over benchmark test problems (Huband et al.
2006) and the results are studied for evaluating the perfor-
mance. As per Nguyen et al. (2012), benchmark test prob-
lems should exhibit flexibility, simplicity and efficiency in
evaluating an algorithm and also should resemble real-world
problems. Huband et al. (2006) have analyzed and reviewed a
set of unconstrained test problems available in the literature.
The test suites addressed are Deb’s toolkit, Zitzler’s ZDT test
suite, Deb’s DTLZ test suite, and Van Veldhuizen’s tool kit.
For validation, we have used fifteen unconstrained bench-
mark test problems in this paper. They are ZDT1, ZDT2,
ZDT3, ZDT4, ZDT6, SCH1, FONSECA, SCH2, DTLZ1,
DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6, and DTLZ7.
Among theZDTseries, ZDT3has a disconnectedPareto front
whereas theZDT2 andZDT6have concave Pareto front each.
Pareto fronts obtained from ZDT1 and ZDT4 are convex in
nature. In DTLZ series, we have used seven DTLZ prob-
lems, where DTLZ1, DTLZ3 have multimodal Pareto fronts
which are linear and concave, respectively. DTLZ2, DTLZ4,
DTLZ5, DTLZ6 and DTLZ7 all have unimodal Pareto fronts
whereas DTLZ4 has a concave Pareto front. DTLZ7 has got
a disconnected Pareto front. In case of SCH1 and SCH2,

both have convex Pareto fronts and FONSECA has a con-
cave Pareto front. The number of decision variables for these
test problems differs and is in the range of 1 and 30. The
DTLZ series of problems are considered with 3 functional
objectives.

Apart from unconstrained problems, we have used five
constrained test problems. They are BINH2, SRN, TNK,
CTP1, and CTP2 (Deb 2001). The first three test problems
have 2 decision variables each, whereas the last two have 4
decision variables each.

4.3 Performance metrics

Quality of solutions determines the performance of any
multi-objective optimization algorithm. Two criteria that
were used to evaluate the performance of a multi-objective
optimization are, how close the obtained Pareto optimal solu-
tions are to the known optimal set and how diverse are the
obtained solutions across the Pareto front. Performance met-
rics such asGenerationalDistance (GD), Spread,Max spread
and HyperVolume Ratio (HVR) (Van Veldhuizen and Lam-
ont 1999; Deb 2001) are used as measures of the above two
criteria. All the above four metrics require the knowledge of
the known Pareto optimal set P.

Generational Distance (GD) is the distance between the
known optimal set of a problem and the obtained optimal set.
It is given by

GD =
(∑|Q|

i=1 d
p
i

)1/p

| Q | (10)

with p = 2, di is the Euclidean distance between solutions of
obtained set Q and the nearest member in the known optimal
set, P. The secondmetric is Spread	, thatmeasures howwell
the solutions are distributed and its extent across the Pareto
front.

	 = d f + dl + ∑N−1
i=1 | di − d̄ |

d f + dl + (N − 1)d̄
(11)

where d f and dl are the distance between the extreme solu-
tions of known and obtained optimal set; di is the Euclidean
distance between the consecutive solutions of the obtained
optimal set and d̄ is the mean of the above distance. The
third performance metric is Max spread (Zitzler 1999). It
measures the length of the diagonal of hyperbox formed by
the extreme objective values in the obtained non-dominated
set (Deb 2001). It is given by

D̄ =
√
√
√
√ 1

M

M∑

m=1

(
max|Q|

i=1 f
i
m − min|Q|

i=1 f
i
m

Fmax
m − Fmin

m

)2

(12)

Fmax
m and Fmin

m are the maximum and minimum value ofmth
objective in obtained optimal solution set. The final measure
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is the HyperVolume Ratio (HVR), which computes the ratio
of HV between obtained Pareto set and known Pareto set,
where HV calculates the volume covered by the Pareto set
(Van Veldhuizen 1999)

HVR = HV(Q)

HV(P)

HV = volume

⎛

⎝
|Q|⋃

i=1

vi

⎞

⎠ (13)

where vi is a hypercube formed between the chosen refer-
ence point and solutions of Q. Among the four performance
metrics used, the first one, GD is the metric that measures
the closeness criteria and Spread and Max spread test the
diversity measure, whereas the Hypervolume metric mea-
sures both the closeness and diversity criteria.

Smaller value of GD metric shows that the obtained non-
dominated Pareto points are closer to the known Pareto solu-
tions. That is, the distance between the obtained and known
optimal solutions is small, which is the desired one for any
multi-objective evolutionary algorithm. For Spread, lesser
the value, uniform will be the Spread and for Max spread
metrics, higher the value better the distribution that covers
the extreme regions of the Pareto front. Higher the HVRmet-
ric, larger the volume covered by the optimal solutions and
closer towards the optimal front. Performance of proposed
MAPLS-AW was evaluated using the above four metrics by
applying the algorithmon15unconstrained and5constrained
benchmark multi-objective problems.

4.4 Experiments conducted

Different experiments were conducted to observe the perfor-
mance of our proposed algorithm MAPLS-AW. The objec-
tives of these experiments are as follows:

– To demonstrate the overall performance of proposed
MAPLS-AW algorithm as a Multi-objective evolutionary
algorithm.

– To study the effectiveness of Preferential Local Search;
– To study the performance of assigning adaptive weights
to multi-objectives while combining them into a single
objective.

We have carried out three sets of experiments by imple-
menting different variants of search algorithms. They are:

1. Our proposed MAPLS-AW algorithm, that combines
Preferential Local Search and adaptive weight mecha-
nism.

2. TLS-EW, traditional hybrid algorithm with depth-limited
local search for 10 steps on every solution in the popu-

lation. To perform local search, multiple objectives are
combined into single objective using equal weights.

3. TLS-AW, traditional hybrid algorithmwith depth-limited
local search for 10 steps on every solution in the popula-
tion but uses adaptive weights.

4. Two elitist multi-objective evolutionary algorithms:
NSGA-II and SPEA2.

All the variations of search algorithms were implemented in
C programming language in Intel(R) Core(TM)i5-3470 CPU
@3.20GHZ system. The performance of all the abovelisted
algorithmswas evaluated by applying them on a set of bench-
mark test suite and by analyzing the metrics obtained. Exper-
iments have been carried out in the following order,

1. The first set of experiments were conducted to study the
overall performance of MAPLS-AW as a memetic or
hybrid MOEA and compared with NSGA-II and SPEA2.

2. NSGA-II, TLS-EWandTLS-AWwere compared to study
the performance of memetic algorithm and to analyze the
nature of adaptive weights.

3. TLS-AW and MAPLS-AW were compared to study the
collective performance of adaptive weights and preferen-
tial local search.

The above three experiments can be categorized into two,
first that evaluates the performance of MAPLS-AW by com-
paring it with NSGA-II & SPEA2 and second category
includes the experiments 2 and 3. Experiment 1 used same
initial population to perform the evaluation on MAPLS-AW,
NSGA-II, and SPEA2. For each trial of experiments 2 and 3,
we have used same initial population to evaluate the variants
TLS-EW, TLS-AW and to compare them with NSGA-II and
MAPLS-AW. This is repeated for 50 trials, where each trial
used different seed to generate different initial population.
The implementations of existing algorithms, NSGA-II and
SPEA2, are checked for correctness by statistically compar-
ing their results with those of Deb et al. (2002). There are 7
common problems reported in Deb et al. (2002) and in our
paper. Independent two-tailed t test was applied on Spread
metric obtained for those 7 problems to check whether our
implementationwas error free. From the obtained t stat value,
0.330977 and the p value, 0.74823, we infer that solutions
obtained by both implementations are similar with no signif-
icant difference in means and hence our implementation of
NSGA-II is inferred to be error free.

Quality Metrics were computed on the final population
for all the experiments carried out. Percentage of improve-
ment was calculated on the results obtained from different
variant algorithms. We have tested the data normality and
homoscedasticity of the results obtained, using Chi-square
test. After verifying that data normality and homoscedas-
ticity hold good on the obtained results, we have applied
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ANOVA test, since multiple comparisons have been carried
out. From the F values of ANOVA test, we have verified that
the populations under comparison are significantly different.
We then applied t test, whose p values are adjusted by Holm–
Bonferroni correction to control Type-I error (Veček et al.
2014). The tables reporting the p values are corrected with
respect to the number of comparisons made in that context.

4.5 Performance of proposed algorithm: MAPLS-AW

To demonstrate the overall performance of our proposed
MAPLS-AWas amulti-objective evolutionary algorithm,we
have carried out the first set of experiments. This section
presents the comparison of performances between our pro-
posed MAPLS-AW and the two other multi-objective evo-
lutionary algorithms, NSGA-II and SPEA2. The mean of
the four performance metrics such as Generational Distance
(GD), Spread, Max spread, and HyperVolume Ratio (HVR)
were observed.

Table 2 shows the performance of NSGA-II, SPEA2,
and MAPLS-AW for the benchmark unconstrained and con-
strained problems through different metrics. Values tabu-
lated are the mean values computed after 50 runs. Table 3
shows the superiority of the proposed MAPLS-AW algo-
rithm through percentage of improvement on the four met-

rics between NSGA-II, SPEA2, and MAPLS-AW for all the
test problems.

Performance of MAPLS-AW algorithm under GD met-
ric is better than other two MOEAs, NSGA-II and SPEA2.
The highest difference has been observed in DTLZ7 with
68% of improvement and 46.5% of improvement in DTLZ4
test problem over NSGA-II. In case of SPEA2, MAPLS-
AW has shown a maximum of 76.2 and 54% of improve-
ment in DTLZ3 and DTLZ7, respectively. All these prob-
lem instances in which the MAPLS-AW outperforms are
multidimensional problems with 3 objectives each. The non-
dominatingpoints generatedbyour algorithmaremore closer
to the known Pareto front than the other two algorithms.
This is because of the exploration capability exhibited by the
hybrid nature of the algorithm. Advantage of using weighted
sum in the local search has guided the optimization properly
and realized through the better convergence towards known
Pareto.

For the Spread metric, the empirical values show a largest
improvement of about 77.4% for DTLZ1 test problem over
NSGA-II algorithm. This reveals the exploration ability of
our algorithm with constrained problems and ability to gen-
erate evenly distributed non-dominating points across the
Pareto front. The second best value of Spread was observed
with TNK for about 75.5% when compared with NSGA-II
and in SCH2 89.8% of improvement is shown over SPEA2.

Table 2 Performance metrics of NSGA-II, SPEA2, and MAPLS-AW

Test problem NSGA-II SPEA2 MAPLS-AW

GD 	 MS HVR GD 	 MS HVR GD 	 MS HVR

ZDT1 0.1511 0.7076 0.8079 0.2001 0.1435 0.5354 0.5966 0.0677 0.1359 0.2163 0.8868 0.2841

ZDT2 0.1607 0.9450 0.8134 0.2127 0.1403 0.8408 0.8188 0.1746 0.1358 0.7453 0.8722 0.6262

ZDT3 0.1558 0.1308 0.7857 0.2311 0.1548 0.1461 0.1380 0.1816 0.1529 0.1172 0.8421 0.3167

ZDT4 0.1595 0.4642 0.5811 0.1164 0.1818 0.4533 0.7459 0.1226 0.1489 0.5100 0.9673 0.2598

ZDT6 0.1715 0.5572 0.7477 0.0650 0.1846 0.5767 0.2693 0.0207 0.1608 0.5200 0.9131 0.0807

DTLZ1 0.1581 0.2513 0.6632 0.0282 0.1368 0.1493 0.6315 0.0332 0.1046 0.0568 0.7661 0.0967

DTLZ2 0.1858 0.1289 0.6026 0.5484 0.2801 0.2420 0.5831 0.5287 0.1505 0.0621 0.7103 0.6376

DTLZ3 0.1480 0.1187 0.5319 0.0020 0.5781 0.0861 0.1721 0.0013 0.1377 0.2732 0.8954 0.0027

DTLZ4 0.4286 0.2148 0.4942 0.6199 0.3544 0.2356 0.7248 0.5673 0.2294 0.1577 0.8756 0.6506

DTLZ5 0.2639 0.8144 0.6438 0.1543 0.3213 0.9804 0.0200 0.6754 0.2269 0.3564 0.9240 0.7696

DTLZ6 0.2867 0.5955 0.8122 0.2115 0.2463 0.7006 0.4235 0.5634 0.2338 0.5462 0.8637 0.7581

DTLZ7 0.7759 0.0519 0.7046 0.1264 0.5394 0.0699 0.8501 0.0602 0.2480 0.0353 0.9419 0.7764

SCH1 0.1859 0.5152 0.9048 0.0385 0.1533 0.4303 0.9009 0.1182 0.1384 0.2352 0.9797 0.7607

SCH2 0.1590 0.0276 0.5766 0.0178 0.1710 0.1858 0.6024 0.0178 0.1531 0.0190 0.6688 0.0896

FONSECA 0.2051 0.1825 0.4945 0.5175 0.2028 0.4053 0.5893 0.5610 0.1928 0.1537 0.7381 0.7024

SRN 0.1459 0.3344 0.3714 0.0015 0.1484 0.1993 0.4327 0.0012 0.1408 0.1813 0.4981 0.0023

TNK 0.1953 0.4524 0.2175 0.2313 0.1684 0.1566 0.2008 0.3358 0.1625 0.1107 0.2525 0.6361

CTP1 0.1410 0.9527 0.9197 0.2632 0.1412 0.6898 0.9333 0.4639 0.1341 0.6532 0.9456 0.7769

CTP2 0.1598 0.1159 0.8599 0.7097 0.1662 0.2188 0.8716 0.6151 0.1469 0.0443 0.9168 0.7903

BINH2 0.1372 0.1392 0.8576 0.0011 0.1424 0.4534 0.8831 0.0039 0.1325 0.0903 0.9244 0.0072
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Table 3 Percentage of
improvement in metrics between
NSGA-II, SPEA2, and
MAPLS-AW

Test problem MAPLS-AW over NSGA-II MAPLS-AW over SPEA2

GD 	 MS HVR GD 	 MS HVR

ZDT1 10.1 69.4 8.9 29.6 5.3 59.6 32.7 76.2

ZDT2 15.5 21.1 6.7 66.0 3.2 11.4 6.1 72.1

ZDT3 1.9 10.4 6.7 27.0 1.2 19.8 83.6 42.6

ZDT4 6.7 9.0 39.9 55.2 18.1 11.1 22.9 52.8

ZDT6 6.3 6.7 18.1 19.4 12.9 9.8 70.5 74.3

DTLZ1 33.8 77.4 13.4 70.8 23.5 62.0 17.6 65.7

DTLZ2 19.0 51.9 15.2 14.0 46.3 74.4 17.9 17.1

DTLZ3 7.0 56.6 40.6 24.8 76.2 68.5 80.8 52.2

DTLZ4 46.5 26.6 43.6 4.7 35.3 33.0 17.2 12.8

DTLZ5 14.0 56.2 30.3 79.9 29.4 63.6 97.8 12.2

DTLZ6 18.5 8.3 6.0 72.1 5.1 22.0 51.0 25.7

DTLZ7 68.0 32.0 25.2 83.7 54.0 49.5 9.7 92.2

SCH1 25.6 54.3 7.6 94.9 9.7 45.3 8.0 84.5

SCH2 3.7 31.0 13.8 80.1 10.4 89.8 9.9 80.2

FONSECA 6.0 15.8 33.0 26.3 4.9 62.1 20.2 20.1

SRN 3.5 45.8 25.4 36.4 5.1 9.0 13.1 47.7

TNK 16.8 75.5 13.9 63.6 3.5 29.3 20.5 47.2

CTP1 4.9 31.4 2.7 66.1 5.1 5.3 1.3 40.3

CTP2 8.1 61.8 6.2 10.2 11.6 79.7 4.9 22.2

BINH2 3.4 35.1 7.2 84.2 6.9 80.1 4.5 45.6

Showing suchhigh amount of improvement for a test problem
with a discontinuous Pareto front clearly states that adaptive
weighted sum in our algorithm has overcome the primary
drawback of weighted sum approaches. ZDT4 is a complex
test problemwith 219 local Pareto solutions (Deb 2001). Our
proposed algorithmMAPLS-AWhas shown an improvement
in Spread metric of about 9% over NSGA-II and 11% over
SPEA2 for this test problem. This substantiates the strength
of MAPLS-AW to explore and exploit the search space and
ability to generatePareto optimal solutionswith better Spread
across the Pareto front.

Max spread metric obtained for proposed MAPLS-AW
algorithm has shown a 43.6% of improvement over NSGA-
II in DTLZ4. This test problem has its Pareto front which
is concave in nature. 97.8% of improvement for this metric
over SPEA2 has been observed in DTLZ5 problem, which
has a convex Pareto front. These observations clearly show
that adaptive weighted sum approach in our MAPLS-AW
algorithm has not missed out the convex and nonconvex parts
of Pareto front.

For HVR, 94.9% of improvement was observed for SCH1
test problem over NSGA-II, which has shown the amount
of area covered under the optimal front by the proposed
MAPLS-AW. 92.2% of improvement has been observed for
DTLZ7 test problem over SPEA2. The increase in perfor-
mance was due to the exploitation of the neighborhood of
potential solutions by hybrid MAPLS-AW search algorithm.

One-tailed t test was applied on all the 50 samples of
obtained metric values for the three algorithms, NSGA-
II, SPEA2, and MAPLS-AW. Computed t stat values and
adjusted p values are reported in Table 4. The number of
comparisons involved here is two and the p values reported
in Table 4 are after Holm–Bonferroni correction. For both
GD and 	 metrics, computed t stat values are larger than t
critical value and from the sign of t value, we infer that the
means of GD and 	 metric obtained by NSGA-II are greater
than means of those metrics obtained by MAPLS-AW.

For the Max spread and HVR metrics, the absolute t stat
values are greater than t critical value and from the sign of t
value, we infer that means of these two metrics of MAPLS-
AW are greater than NSGA-II. These are supported by corre-
sponding p values, which are less than 0.05, implying a high
confidence on the inferences made.

Finally we did a t test on the means of performance met-
rics obtained from 20 test problems. 2.0785, 3.465, −5.53,
and −4.211 are the t stat values obtained for GD, 	, MS,
and HVR when NSGA-II and MAPLS-AW are compared.
Their corresponding adjusted p values are 4.15E-02, 2.59E-
03, 2.47E-05, and 4.72E-04. Computed t stat values between
MAPLS-AW and SPEA2 for all the test problems are, 2.557,
3.5, −4.05, and −4.355 and their corresponding adjusted
p values are 1.93E-02, 2.39E-03, 6.78E-04, and 3.40E-04,
respectively. From this, we infer that MAPLS-AW is in gen-
eral better than NSGA-II and SPEA2.
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1378 J. Bhuvana, C. Aravindan

Fig. 1 Pareto fronts of Unconstrained benchmark problems. a Pareto front of BINH2. b Pareto front of FONSECA

Fig. 2 Pareto fronts of Constrained benchmark problems. a Pareto front of SRN. b Pareto front of CTP1

The sample Pareto fronts shown in Figs. 1, 2, and 3 pic-
torially depict, how the obtained non-dominant solutions
are wide spread and distributed across the Pareto front.
The Pareto points were uniformly distributed and were not
crowded in one region.

The results obtained reveal that the MAPLS-AW exploits
the neighborhood region of potential parent solutions with
better exploration of search space. The adaptive weights pro-
vide the functional objectives with the weight they deserve
and take the optimization process in the proper direction.
Hence the unnecessary random searching has been avoided
here.

4.6 Performance of adaptive weights and Preferential Local
Search

We have established that memetic algorithm MAPLS-AW
works better than global search algorithm like NSGA-II and
SPEA2. We have introduced two new features in our work,
adaptive weights and Preferential Local Search, the follow-
ing two subsections will discuss the individual performances
of these two contributing features of MAPLS-AW. To enable
this study, couple of variants of search algorithms TLS-EW
and TLS-AW were implemented and experiments were car-

ried out to compare their performances. Same initial popula-
tion was used to compare the variants.

4.6.1 Adaptive weights

This section discusses about the performance of two variant
memetic algorithms,TLS-EW and TLS-AW over a global
search algorithm like NSGA-II. The objective is to study the
performance of adaptive weights used to combine multiple
objectives into a single objective.

TLS-EW, a hybrid or memetic algorithm was imple-
mented with an integrated local search (LS), where the LS
has been depth limited to 10 steps. The multi-objectives of
the test problemswere combined into a single objective prob-
lem on which the LS was applied. Weighted sum approach
was used where the multiple objectives were assigned with
equal weights. The mean of the four performance metrics
such as Generational Distance (GD), Spread, Max spread,
and HyperVolume Ratio (HVR) and time consumed by each
of the algorithms were computed.

Table 5 shows the performance difference quantified in
terms of metrics between NSGA-II and TLS-EW for the
benchmark unconstrained and constrained problems. Values
tabulated are the mean values computed after 50 runs.
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Memetic algorithm with Preferential Local Search 1379

Fig. 3 Pareto front of ZDT6, an unconstrained benchmark problem

Table 5 Performance metrics of NSGA-II, TLS-EW, TLS-AW, and MAPLS-AW

Test problem NSGA-II TLS-EW TLS-AW MAPLS-AW

GD 	 MS HVR GD 	 MS HVR GD 	 MS HVR GD 	 MS HVR

ZDT1 0.1776 0.9287 0.7608 0.5196 0.1551 0.8872 0.8737 0.6934 0.1489 0.5133 0.9246 0.7487 0.1435 0.4669 0.9457 0.8133

ZDT2 0.1743 0.9362 0.8265 0.1452 0.1453 0.8932 0.8564 0.1722 0.1423 0.8418 0.9085 0.2515 0.1382 0.6918 0.9595 0.5570

ZDT3 0.1792 0.3474 0.8641 0.3075 0.1547 0.1883 0.9161 0.3259 0.1505 0.1261 0.9267 0.6041 0.1469 0.0862 0.9397 0.7078

ZDT4 0.1761 0.4082 0.8895 0.1366 0.1576 0.4413 0.9070 0.1209 0.1473 0.4773 0.9303 0.1659 0.1392 0.6895 0.9582 0.1890

ZDT6 0.2030 0.6101 0.8483 0.1505 0.1532 0.5819 0.8625 0.2003 0.1471 0.5791 0.9196 0.2522 0.1440 0.5152 0.9376 0.4941

DTLZ1 0.6139 0.3351 0.4925 0.0311 0.5371 0.2663 0.7537 0.0913 0.4337 0.1386 0.8696 0.1391 0.3285 0.0501 0.9389 0.2940

DTLZ2 0.2438 0.8534 0.2295 0.0854 0.1489 0.7872 0.2580 0.1430 0.1155 0.7288 0.3573 0.1882 0.0684 0.5909 0.7340 0.6061

DTLZ3 0.6647 0.1539 0.5772 0.0020 0.5580 0.0911 0.6712 0.0092 0.4465 0.0598 0.7536 0.0624 0.3353 0.0336 0.8402 0.2511

DTLZ4 0.3412 0.2966 0.4294 0.1230 0.2843 0.1899 0.5580 0.1818 0.2488 0.1353 0.6564 0.3194 0.1852 0.0966 0.7927 0.3463

DTLZ5 0.5067 0.4052 0.6016 0.0706 0.4174 0.2469 0.7730 0.1063 0.3482 0.1698 0.8125 0.1164 0.2864 0.1138 0.8682 0.2953

DTLZ6 0.5612 0.1881 0.5285 0.0742 0.4643 0.1215 0.6731 0.1007 0.3500 0.0936 0.7709 0.1243 0.3060 0.0487 0.8319 0.1808

DTLZ7 0.2972 0.1635 0.5465 0.0474 0.1991 0.1159 0.7109 0.1201 0.1183 0.0645 0.7993 0.1415 0.0362 0.0436 0.8683 0.2620

SCH1 0.1756 0.6099 0.2644 0.0033 0.1547 0.3432 0.6962 0.0470 0.1439 0.0567 0.7904 0.0861 0.1345 0.0296 0.9035 0.1246

SCH2 0.1848 0.1023 0.2442 0.0221 0.1793 0.0756 0.2644 0.0619 0.1750 0.0489 0.5470 0.1255 0.1547 0.0296 0.6962 0.2256

FONSECA 0.2497 0.5188 0.8182 0.3382 0.2190 0.4017 0.9095 0.5256 0.2083 0.3309 0.9673 0.6063 0.1930 0.2128 0.9844 0.7661

SRN 0.1647 0.1712 0.2549 0.0014 0.1546 0.1063 0.3194 0.0103 0.1501 0.0899 0.3624 0.0159 0.1434 0.0529 0.4046 0.1273

TNK 0.1979 0.0846 0.1848 0.3935 0.1632 0.0694 0.1914 0.4544 0.1515 0.0591 0.1979 0.5033 0.1011 0.3129 0.2325 0.5759

CTP1 0.1671 0.1710 0.9024 0.2712 0.1618 0.1146 0.9360 0.3698 0.1548 0.0634 0.9588 0.4919 0.1431 0.0326 0.9753 0.6298

CTP2 0.1824 0.5650 0.7305 0.4317 0.1734 0.4409 0.8470 0.5174 0.1695 0.2792 0.9005 0.6761 0.1375 0.1568 0.9475 0.8694

BINH2 0.1639 0.6825 0.3553 0.0068 0.1506 0.3430 0.4478 0.0102 0.1460 0.2893 0.6132 0.0129 0.1341 0.1656 0.9077 0.0329

The percentage of improvement in the magnitude of the
four metrics between TLS-EW and NSGA-II for all the
unconstrained and constrained test problems is tabulated in
Table 6. The increase in performance was due to the fine tun-
ing through integrated LS performed on all the solutions by

TLS-EW and substantiates the superiority of TLS-EW over
NSGA-II.

To study the performance of adaptive weights, we imple-
mented TLS-AW, where the LS has been depth limited to
10 steps. Adaptive weights are calculated for each solution
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1380 J. Bhuvana, C. Aravindan

Table 6 Percentage of improvement in metrics between NSGA-II, TLS-AW, TLS-AW and MAPLS-AW

Test problem TLS-EW over NSGA-II TLS-AW over TLS-EW MAPLS-AW over TLS-AW

GD 	 MS HVR GD 	 MS HVR GD 	 MS HVR

ZDT1 12.68 4.47 12.93 25.07 3.99 42.14 5.51 7.39 3.67 9.04 2.23 7.94

ZDT2 16.65 4.59 3.49 15.70 2.06 5.76 5.74 31.52 2.85 17.81 5.31 54.85

ZDT3 13.69 45.78 5.68 5.66 2.68 33.02 1.14 46.05 2.41 31.67 1.39 14.65

ZDT4 10.52 7.50 1.92 11.49 6.55 7.54 2.51 27.16 5.49 30.77 2.92 12.19

ZDT6 24.52 4.63 1.64 24.83 3.99 0.48 6.21 20.59 2.10 11.03 1.92 48.97

DTLZ1 12.52 20.51 34.65 65.94 19.25 47.96 13.33 34.34 24.25 63.86 7.38 52.69

DTLZ2 38.93 7.75 11.07 40.31 22.41 7.42 27.77 24.02 40.80 18.92 51.32 68.95

DTLZ3 16.05 40.80 14.00 77.81 19.98 34.32 10.94 85.33 24.91 43.92 10.31 75.15

DTLZ4 16.66 35.99 23.04 32.32 12.50 28.75 14.99 43.08 25.56 28.56 17.19 7.77

DTLZ5 17.63 39.06 22.18 33.54 16.57 31.22 4.86 8.69 17.75 32.97 6.41 60.58

DTLZ6 17.27 35.43 21.48 26.34 24.62 22.97 12.68 18.99 12.57 48.00 7.33 31.23

DTLZ7 32.99 29.10 23.12 60.52 40.60 44.41 11.05 15.09 69.38 32.41 7.95 46.02

SCH1 11.88 43.72 62.02 93.06 7.03 83.47 11.91 45.36 6.52 47.74 12.52 30.87

SCH2 3.00 26.13 7.64 64.26 2.36 35.31 51.65 50.67 11.61 39.35 21.44 44.37

FONSECA 12.30 22.57 10.04 35.66 4.92 17.63 5.98 13.31 7.31 35.69 1.73 20.86

SRN 6.09 37.92 20.18 86.41 2.94 15.43 11.87 35.41 4.49 41.12 10.44 87.47

TNK 17.52 17.94 3.44 13.41 7.15 14.93 3.29 9.71 33.25 81.13 14.85 12.61

CTP1 3.16 32.96 3.59 26.68 4.33 44.69 2.37 24.81 7.54 48.57 1.69 21.90

CTP2 4.94 21.97 13.76 16.55 2.27 36.68 5.94 23.48 18.85 43.82 4.96 22.23

BINH2 8.08 49.74 20.66 33.18 3.05 15.67 26.97 20.57 8.18 42.75 32.45 60.77

according to their positional values in objective space using
Eqs. 6, 8, and 9. Table 6 shows the difference in performance
between TLS-EW and TLS-AW for the benchmark uncon-
strained and constrained problems. Looking at the perfor-
mance of TLS-AW variant of search algorithm under GD
metric, results show that it performs better in all the test
problems with a lesser GD value compared to the equal
weight version TLS-EW. There was a 40.6% of percentage
of improvement for DTLZ7 problem shown in Table 6 and
a minimum of 2.06% was observed for ZDT2. This shows
that the adaptive weight variant of the memetic algorithm
really have taken the optimization towards the known opti-
mal solutions. The metrics computed for Spread and Max
spread show that TLS-AW outperforms TLS-EW on all the
benchmark problems. Spread shows an improvement from
7.42 to 83.47%, where for the Max spread the percentage of
improvement is in the range 1.14–51.65%. The increase in
performance is due to the exploitation of the neighborhood
of potential solutions by hybrid TLS-AW search algorithm.
Under HVR metric, the DTLZ3 test problem has shown a
highest percentage of improvement of 85.33% than any other
problem in the test suite.

One-tailed t testwas applied and the computed t stat values
are given in Table 7 along with the p values. The p values are
reported after the Holm–Bonferroni adjustment. For the GD

and 	 metrics, we can infer that means of metrics obtained
by TLS-EW are less than those of NSGA-II and means of
metrics obtained by TLS-AW are less than those of TLS-
EW. For MS and HVR metrics, the absolute t stat values are
greater than t critical value and from the sign of t-stat values,
we have inferred that means of these metrics obtained by
NSGA-II are lesser than those of TLS-EW and means of
metrics obtained by TLS-EW are lesser than those of TLS-
AW.

4.6.2 Preferential Local Search

The second feature contributing to the working of MAPLS-
AW is the application of Preferential Local Search. To study
the effectiveness of Preferential Local Search, we have con-
ducted the experiments on variant search algorithms with
PLS and without PLS. This section discusses the results
obtained from proposed MAPLS-AW and hybrid algorithm
TLS-AW. Former has Preferential Local Search along with
adaptive weight mechanism whereas the later has got fixed
10-step local search incorporated using adaptive weights but
without PLS feature. This is the third category of experiment
carried out where the mean of metrics are given in Table 5.

When the metrics obtained are examined (last two
columns of the Table 5), it show that MAPLS-AW outper-
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8 forms the TLS-AW.This is because of the fact that, the poten-

tially good solutions in every generation are identified and
undergo local search. Those solutions are iteratively deep-
ened further, if they survive across generations. This has
been reflected in the four metrics. Percentage of improve-
ment is shown in Table 6, where a maximum of 69.38% in
DTLZ7 in GD, 63.86% of Spread is achieved in DTLZ1.
HVR attains a maximum of 75.15% for DTLZ3 test prob-
lem. These three test problems are multidimensional test
problems which show that MAPLS-AW works better than
traditional hybrid algorithm TLS-AW on multidimensional
objective space as well. Quality of solutions obtained from
MAPLS-AW is due to identification of potential solutions
in each generation. Instead of applying N fixed local search
steps on every solution,MAPLS-AWprefers individualswho
survive across generations for local search and hence local
search is iteratively deepened for good individuals. Statistical
one-tailed t test was applied between TLS-AW andMAPLS-
AW, whose adjusted p values are shown in last column of
Table 7. We can infer that means of GD, 	 of MAPLS-AW
are lesser than those of TLS-AW and means of MS, HVR
of MAPLS-AW are better than those of TLS-AW. The time
consumed by NSGA-II, TLS-EW, TLS-AW, and MAPLS-
AW are given in Table 8. To summarize, we have substanti-
ated thatMAPLS-AWoutperforms traditionalmemetic algo-
rithm, TLS-AW, with fixed local search steps. This has been
observed through performance metrics computed from the
non-dominated solutions obtained.

5 Economic emission load dispatch

To demonstrate that the proposed algorithm can be used to
solve real-world problems, we applied it on Economic Emis-
sion Load Dispatch (EELD) with valve point loading. The
reason for choosing EELDwith valve pointmodel is to estab-
lish that our MAPLS-AW works well with the nonsmooth
functions and produces better trade-off solutions. EELD is
a bi-objective optimization problem that requires the objec-
tives to be optimized for best fuel cost and emission cost. In
general, the power plants want to reduce the cost involved in
power generation, often neglecting the amount of pollutants
they produce. Due to increase in awareness over the environ-
mental pollution (Talaq et al. 1994; Abido 2006), there is an
increase in need that demands the pollution to be controlled
and to be reduced. That is, the EELD problem is to balance
the two conflicting objectives of minimizing fuel cost and
emission cost.

5.1 Problem formulation

The objective of Economic Emission Load Dispatch is to
bring out a schedule of power units that generate power to
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Table 8 Time consumed by each of NSGA-II, TLS-EW, TLS-AW, and
MAPLS-AW in milliseconds

Test problem NSGA-II TLS-EW TLS-AW MAPLS-AW

ZDT1 3.238 3.567 3.140 2.252

ZDT2 3.277 4.016 2.958 2.694

ZDT3 4.232 5.058 4.068 3.619

ZDT4 3.244 3.052 3.491 2.059

ZDT6 3.456 2.877 3.044 1.605

DTLZ1 3.076 3.405 3.394 3.030

DTLZ2 4.645 4.069 3.789 3.616

DTLZ3 4.499 4.779 4.231 4.186

DTLZ4 4.475 5.276 3.246 2.567

DTLZ5 5.556 3.807 3.686 3.471

DTLZ6 3.666 3.590 2.654 2.636

DTLZ7 3.730 3.407 3.406 3.333

SCH1 0.648 0.806 0.784 0.458

SCH2 3.568 3.472 2.542 2.332

FONSECA 1.727 1.626 1.500 0.976

SRN 1.212 1.072 0.937 0.648

TNK 0.348 0.076 0.057 0.051

CTP1 3.644 3.117 3.270 3.129

CTP2 3.834 3.643 3.531 2.573

BINH2 0.347 0.082 0.062 0.054

meet the load demand. The schedule should be in such a way
that it minimizes the costs involved in it by satisfying the
equality and inequality constraints (Abido 2003; Balakrish-
nan et al. 2003).

5.1.1 Minimization of fuel cost

One of the objectives of Economic Emission Load Dispatch
is to minimize the cost function F(PG)

Minimize F(PG) =
N∑

i=1

fi (P
i
G) (14)

where N is the number of generating units and fi (Pi
G) is the

cost of generation of each unit represented by a quadratic
function,

fi (P
i
G) = ai (P

i
G)2 + bi P

i
G + ci (15)

In the above equation, ai , bi and ci are the cost coefficients.
Considering the valve point effect, the function is represented
as a sum of quadratic and sinusoidal functions,

fi (P
i
G) = ai + bi P

i
G + ci (P

i
G)2

+ | di sin(ei (P
i
Gmin − Pi

G) | (16)

di , ei , and Pi
Gmin are the cost coefficients and lower power

generation limit of i th unit.

5.1.2 Minimization of emission cost

The other objective of EELD is to minimize the total amount
of emission from the system,

Minimize E(PG) =
N∑

i=1

Ei (P
i
G) (17)

where Ei (Pi
G) is the emission dispatch from each generating

unit given by sum of quadratic and exponential function.

Ei (P
i
G) = αi + βi P

i
G + γi (P

i
G)2 + ηiexp(δi P

i
G) (18)

where αi , βi , γi , and ηi , δi are the emission coefficients of
i th unit.

5.1.3 Constraints

(i) Power balance constraints

The total power generated by all the units should be equal to
the sum of total demand PD and transmission loss PL ,
N∑

i=1

Pi
G − PD − PL = 0 (19)

PL is calculated by B coefficients method (Wood and Wol-
lenberg 2011) which can be represented by

PL =
N∑

i=1

N∑

j=1

Pi
G Bi j P

j
G (20)

(ii) Capacity constraints

The power generated by each unit is restricted by upper and
lower power limits

Pi
Gmin ≤ Pi

G ≤ Pi
Gmax i ∈ N (21)

5.2 Implementation of MAPLS-AW to solve EELD
problem

Population is initializedwith randomly generated individuals
within the capacity constraints. Each chromosome will be a
vector of N parameters, where each parameter refers to the
power generated by each generator.

〈P1 P2 P3 P4 · · · PN 〉 (22)

Fitness of each individual is evaluated and the steps
of MAPLS-AW namely, identifying the parents, applying
Preferential Local Search on them, computing ranks and
fronts using non-domination relation, computing crowding
distance, constructing the mating pool using constrained
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binary tournament selection are carried out. This is followed
by the recombination operations over selected parents. SBX
crossoverwith nullified distribution parameter is applied over
every gene of the chromosome. Polynomial mutation is per-
formed on the new offspring with respect to mutation proba-
bility. The new set of offspring undergoes the one-step pref-
erential local search and then combined with parents for the
next generation.

Adaptive weight is computed for each individual and used
for the calculation of the weight to be assigned for the indi-
vidual objectives. Stopping criteria is set to 1,500 fitness
evaluations. We have used the inputs for cost and emission
coefficients from Basu (2011).

5.2.1 Performance metrics

To evaluate the performance of the MAPLS-AW on a real-
world problem, we have used two metrics to examine the
quality of obtained solutions. They are Hypervolume (HV)
andSetCoveragemetric (SCM).Since theoptimumsolutions
are not known for EELDproblem, these twometricswill help
in evaluating the proposed MAPLS-AW algorithm.

The SCM compares two sets of solutions and yields an
outcome in the range 0 and 1, with respect to the amount of
coverage between the sets. Let A and B be the two solution
sets, Set Coverage Metric (Zitzler and Thiele 1999) between
A and B is given by

SCM(A, B) = | {b ε B | ∃ a ∈ A : a ≺ b} |
| B | (23)

SCM(A,B) =1, when solutions of A are dominating all the
solutions of B and SCM(A,B) = 0, when none of A is
dominating the solutions of B. SCM is not symmetric that
is, SCM(A,B) �= SCM(B,A). The resultant set generated

by MAPLS-AW has been compared with the set obtained
from NSGA-II and SPEA2. That is, SCM(MAPLS-AW,
NSGA-II), and SCM(NSGA-II, MAPLS-AW) have been
computed to analyze the performance of MAPLS-AW. Sim-
ilarly, SCM between MAPLS-AW and SPEA2 has been
computed.

Three different test cases are used to evaluate the perfor-
mance of the MAPLS-AW algorithm. They are 6, 10, and
40 generator systems to generate 1,200 MW, 2,000 MW, and
10,500 MW power, respectively.

5.3 Performance of MAPLS-AW on EELD problem

5.3.1 Case I

This is a 6 generator system with simple quadratic fuel and
emission cost functions and with the transmission loss to
generate 1,200 MW power. The test data are taken from
Basu (2011). The results of best fuel cost and emission
cost obtained from NSGA-II, SPEA2, and memetic algo-
rithm with Preferential Local Search using adaptive weights
(MAPLS-AW are shown in Fig 4. The Hypervolume metric
obtained for this test case is listed in Table 9. The proposed
MAPLS-AW resulted in higher value, i.e., the volume cov-
ered under the optimal front by the MAPLS-AW algorithm
was larger when compared with the rest of the algorithms.
MAPLS-AW shown an improvement of about 6.6 and 3.5%
over NSGA-II and SPEA2, respectively.

The adjusted p values of t test over Hypervolume met-
ric shown in Table 10 also confirmed that there is a sig-
nificant difference between MAPLS-AW, NSGA-II, and
SPEA2 algorithms. Along with Hypervolume metric, we
have computed SCM. Mean of SCM values after 50 runs
has been computed and tabulated in Table 9. The SCM
between the proposed MAPLS-AW and NSGA-II for case

Fig. 4 Pareto front of 6 generator case
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Table 9 Performance metrics obtained from NSGA-II, SPEA2, andMAPLS-AW

Test case HV SCM

NSGA-II SPEA2 MAPLS-AW NSGA-II
≺ MAPLS-AW

MAPLS-AW
≺ NSGA-II

SPEA2
≺ MAPLS-AW

MAPLS-AW
≺ SPEA2

I 0.5357 0.5514 0.5711 0.0400 0.0879 0.0127 0.0772

II 0.1392 0.1619 0.3838 0.0927 0.1696 0.0199 0.0821

III 0.7873 0.7780 0.8221 0.4993 0.6182 0.3377 0.5886

Table 10 t stat and adjusted p values of t test applied on metrics obtained from NSGA-II, SPEA2, MAPLS-AW

Test case HV SCM

NSGA-II with MAPLS-AW SPEA2 with MAPLS-AW NSGA-II with MAPLS-AW SPEA2 with MAPLS-AW

I −3.631, 1.43E-06 −12.450, 2.87E-03 −7.488, 1.49E-02 −4.417, 3.12E-04

II −5.059, 1.36E-19 −5.852, 1.03E-17 −2.030, 5.52E-05 −3.186, 3.12E-05

III −7.656, 1.46E-02 −11.424, 4.42E-03 −2.061, 1.11E-03 −4.611, 1.68E-09

Fig. 5 Pareto front of 10 generator case

I, 6 generator system shows the effective coverage of
non-dominating solutions of MAPLS-AW than NSGA-II.
That is, number of non-dominating solutions generated by
MAPLS-AW is 54.49%more than non-dominating solutions
obtained from NSGA-II. There was a massive 83.54% of
improvement in the SCM metric between MAPLS-AW and
SPEA2.

5.3.2 Case II

The second case is a system with 10 generators consider-
ing the nonsmooth functions of valve point effect and with
transmission loss to generate 2,000MWpower. Optimal fuel
and emission cost obtained generated by three algorithms are
shown in Fig. 5, which depicts that proposed MAPLS-AW

obtained best emission and fuel cost outperforming the other
two algorithms. The Hypervolume metric tabulated in Table
9 shows that proposed MAPLS-AW has covered larger area
under the optimal front and this has been supported by the t
test results in Table 10. This 10 generator case has shown an
improvement of about 63.73% over NSGA-II and 57.81%
over SPEA2 in Hypervolume metric. It is evident that this
kind of improvement is due to the presence of two contribut-
ing features, Preferential Local Search and adaptive weights
that enable a wide exploration of extreme regions of search
space.

The SCM computed between NSGA-II and MAPLS-AW
reveals that less number of non-dominating solutions have
been obtained from NSGA-II than MAPLS-AW. Similarly,
the amount of coverage by MAPLS-AW over SPEA2 was
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Fig. 6 Pareto front of 40 generator case

way better with 75.7% of improvement than set coverage of
SPEA2overMAPLS-AW.The adjusted p values of t test over
SCM for these algorithms are given in Table 10, where the
adjusted probability values for the one-tailedwerewell below
the level of significance, which is 5%. The t test confirmed
that proposed MAPLS-AW algorithm is significantly better
than NSGA-II and SPEA2.

5.3.3 Case III

As the third case, we took the 40 generator systemwith valve
point loading with demand of 10,500 MW of power using
nonsmooth fuel cost and emission functions. Cost coeffi-
cients and generator capacity constraints are taken fromBasu
(2011). 40 generator system has been taken as a no loss case.
We applied MAPLS-AW algorithm, NSGA-II, and SPEA2
to solve this multi-objective problem. Non-dominated solu-
tions obtained from three algorithms are shown in Fig. 6.
The amount of area covered under Pareto front measured
in terms of Hypervolume obtained by MAPLS-AW is bet-
ter than other two algorithms. Table 9 presents the perfor-
mance of algorithms in comparison where there is a 4.6% of
improvement over NSGA-II and 5.6% of improvement over
SPEA2.

The mean of SCM obtained by comparing non-dominated
solutions obtained fromMAPLS-AW, NSGA-II, and SPEA2
for this case is given in Table 9. There is an improvement of
74.2% observed by MAPLS-AW over SPEA2 and 19.2%
over NSGA-II. The t test was applied over the metrics HV&
SCM. The computed t stat values and the adjusted p values
are presented inTable 10. From these values,we can infer that
the metrics of MAPLS-AW are better than those of NSGA-II
& SPEA2. This shows that MAPLS-AW is able to achieve
quality solutions on complex real-world applications as well.

6 Conclusion

In this paper, we have introduced a hybrid algorithm referred
to as MAPLS-AW. This memetic algorithm addresses the
challenges that arise while combining a global search with
local search procedure. MAPLS-AW deals with which indi-
viduals are chosen for local search, how often a local search
can be applied, and how deep a local search is allowed.
MAPLS-AW identifies potential solutions for Preferential
Local Search and facilitates iterative deepening of local
search over them. We have proposed an adaptive weight
mechanism which is used while converting multi-objectives
into single objective. This adaptive weight assigned to every
objective is dynamic and adapts across generations. Adap-
tive weights are computed by taking the current positional
information of a solution from the objective space.

To examine the overall performance of proposedMAPLS-
AW algorithm as a multi-objective evolutionary algorithm,
we compared it with NSGA-II and SPEA2. We tested the
performance of the proposed algorithm by applying it on 20
constrained and unconstrained benchmark test problems and
a real-world application EELD.

Theperformancemetrics reveal that the proposedMAPLS-
AW stands out as a better algorithm. This is due to the pref-
erential identification of good solutions and the fine tuning
applied on them. Statistical t test confirmed that proposed
MAPLS-AW algorithm is performing better than NSGA-II
and SPEA2.

When applied on a real-world application like EELD,
MAPLS-AW is able to produce the better fuel and emission
cost in all the three different case studies taken. The perfor-
mance of proposed algorithm on EELD is measured using
Hypervolume metric and Set Coverage Metrics and tested
using statistical t test. The results reveal that our proposed
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algorithm has the ability to provide a trade-off among the
nonsmooth functional objectives.

In the current work, we have used a hard fixed termina-
tion condition of 25000 fitness evaluations. Instead, proper
decision making can be incorporated to decide upon when
to stop the evolution of the memetic algorithm. In this paper,
the idea of Preferential Local Search with adaptive weights
has been incorporated into NSGA-II to develop the hybrid
algorithm. But these ideas can be easily integrated with any
of the other evolutionary optimization algorithms.
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