
Expert Systems with Applications 42 (2015) 3297–3305
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Two-dimensional residual-space-maximized packing
http://dx.doi.org/10.1016/j.eswa.2014.12.021
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: wangyanchao1988@gmail.com (Y. Wang), chenlujie@sutd.

edu.sg (L. Chen).
Yanchao Wang, Lujie Chen ⇑
Singapore University of Technology and Design, 20 Dover Drive, Singapore

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 20 December 2014

Keywords:
Two-dimensional packing
Heuristics
Residual space
Residual-space-maximized packing
Many approaches exist for solving two dimensional rectangle-packing problems. Some rely on multiple
heuristic policies to detect suitable packing positions. Others resort to searching for a sound packing
sequence from a great number of variations. This paper describes a heuristic algorithm with only a single
policy: maximize the residual space during packing, which ensures that rectangles to be packed will fit
into the space with maximum likelihood. An efficient implementation is proposed to realize the policy.
Experimental results based on openly available datasets demonstrate that the proposed algorithm is
comparable to most state-of-the-art algorithms in space efficiency while is significantly faster in data
processing. In the case of large-scale problems tested, it is the best by both evaluation metrics.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Cutting and Packing (C&P) is a class of optimization problems
with a wide range of applications in resource management
(Dyckhoff, 1990). Over years of research, several subdivisions of
C&P problems have been studied scholarly and their solutions have
been implemented in the industry. Although C&P is known to be
NP-hard (Non-deterministic Polynomial-time hard) in general
(Garey & Johnson, 1979), existing methods can find near-optimal
solutions to various problems; nevertheless, new approaches and
algorithms are still emerging in the research field. Some offer even
better solutions in broader scenarios, while others reduce the time
and space overhead in implementation.

This paper pertains to two-dimensional (2D) rectangle packing,
focusing on bin packing – single bin size bin packing problem
(SBSBPP) and strip packing – open dimension problem (ODP) in
the typology of C&P (Wäscher, Haußner, & Schumann, 2007). The
objective of the former is to minimize the number of fixed-size
bins and that of the latter is to minimize the overall height of a
fixed-width, infinitely long bin. Specifically, the problems under
investigation belong to the RF (Rotated, Free cutting) subtype as
classified by Lodi, Martello, and Vigo (1999), where input rectan-
gles can be rotated and packing is not constrained by guillotine
cutting.

A 2D rectangle-packing algorithm is developed based on a sin-
gle policy: the residual space (RS), i.e. the unused region, should be
maximized during each step of packing. It will be shown that an
efficient implementation exist for such a residual-space-maxi-
mized packing (RSMP) policy. RSMP can produce comparable
results to existing algorithms but runs considerably faster. The
related work to this study is reviewed in Section 2. The principle
of RSMP is described in Section 3. Comparisons with existing
algorithms based on benchmark datasets are presented in Section
4. Conclusion and future work of the proposed approach are pre-
sented in Section 5.
2. Related work

One of the early approaches to 2D packing is the so-called exact
method based on integer programming formulation (Beasley,
1985; Martello & Vigo, 1998). It attempts to find the packing posi-
tions of rectangles by solving a set of linear equations, constructed
to optimize certain criteria. The number of equations to solve is
related to the number of rectangles to pack; thereby the computa-
tional cost is relatively high.

A different approach, known as the heuristic approach,
produces solutions with relatively less computational overhead.
Heuristic algorithms are motivated by intuitive experience, e.g.
rectangles are piled to the bottom-left (BL) corner of a bin by the
BL heuristic (Baker, Coffman, & Rivest, 1980). Performance of an
algorithm depends on the efficacy of the heuristic. Many heuristic
algorithms consist of a placement method, used to place a rectan-
gle at a specific location in a bin, and a sequence-generation strat-
egy, to create various sequences by changing the order of the input
rectangles. Bottom-left (BL) (Baker et al., 1980), bottom-left-fill
(BLF) (Chazelle, 1983), improved bottom-left (IBL) (Liu & Teng,
1999) and difference process DP (Lai & Chan, 1997) are widely used

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.12.021&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.12.021
mailto:wangyanchao1988@gmail.com
mailto:chenlujie@sutd.edu.sg
mailto:chenlujie@sutd.edu.sg
http://dx.doi.org/10.1016/j.eswa.2014.12.021
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

3298 Y. Wang, L. Chen / Expert Systems with Applications 42 (2015) 3297–3305
placement methods. Methods such as floor-ceiling (FC) and touch-
ing perimeter (TP) have also been reported (Lodi et al., 1999).

Sequence generation is motivated by the fact that a placement
method would produce different results if the order of the input
rectangles is varied. When different sequences are tested, the best
result can be treated as the solution. To date, lots of strategies have
been proposed, such as simulated annealing (SA) (Dowsland, 1993)
and genetic algorithm (GA) (Jakobs, 1996; Liu & Teng, 1999), arti-
ficial neural network (Dagli & Poshyanonda, 1997), tabu search
(TS) (Lodi et al., 1999), unified tabu search (UTS) (Bennell, Lee, &
Potts, 2013; Lodi, Martello, & Vigo, 2004), greedy randomized
adaptive search procedure (GRASP) (Alvarez-Valdés, Parreño, &
Tamarit, 2005), sequential value correction (SVC) (Belov,
Scheithauer, & Mukhacheva, 2008), iterative maximal area (IMA)
(Hayek, Moukrim, & Negre, 2008), iterative doubling binary search
(IDBS) (Wei, Oon, Zhu, & Lim, 2011), single- and multi-crossover
genetic algorithm (SGA and MXGA) (Bennell et al., 2013). Some
of these algorithms have achieved near-optimal solutions in
certain scenarios; however, the drawback is the prolonged
computation time due to many trials of different sequences.

There are alternatives to sequence generation relatively inde-
pendent from a placement method. For example, Burke, Kendall,
and Whitwell (2004) proposed a best-fit (BF) heuristic algorithm
that could actively select a suitable sized rectangle to pack, which
makes it a placement method that generates a sequence during
packing. BF can also be combined with a sequence-generation
strategy to improve the performance (Burke, Kendall, &
Whitwell, 2006). Variations of BF have been proposed, such as
the bidirectional best-fit (BBF) (As�ık & Özcan, 2009) and modified
bidirectional best-fit (BBFM) (Özcan, Kai, & Drake, 2013) algo-
rithms. Among these, BBFM is the best in terms of space-efficiency,
owing to a large number of (6912) policy combinations incorpo-
rated. The supposedly most suitable policy is applied at each phase
of packing but the computational cost is heavy due to multiple lev-
els of nested comparison.

Some recent publications suggested that effective algorithms
could be based on only a few policies. The fast heuristic (FH) algo-
rithm (Leung & Zhang, 2011) applied a scoring policy and the bin-
ary search heuristic algorithm (BSHA) (Zhang, Wei, Leung, & Chen,
2013) incorporated a primary policy that ensures the smoothness
of the unused region’s envelop. Better results than most existing
algorithms were achieved and the processing time was shorter in
some scenarios than the algorithms of many policies (As�ık &
Özcan, 2009; Özcan et al., 2013). However, the processing time
was not proportional to the number of rectangles: some
small-scale tasks might take longer to process than large-scale
problems.
1(a)

2
210

250

2
1(b)

180

220

1
2

(c)

190

210

Fig. 1. (a) Two rectangles (the first 180 by 30 and the second 90 by 30) are to be
packed in a bin of 210 by 250. The blue and red regions indicate two RSs after the
first rectangle is packed. (b) Based on the smallest-suitable-space policy (Gonçalves,
2007), the second rectangle will be packed vertically at the bottom-right corner.
The subsequent largest RS is 180 by 220. (c) RSMP will pack the second one
horizontally because the largest RS in this position is 210 by 190, larger than that
obtained in (b). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
3. Principle

The heuristic policy of the proposed residual-space-maximized
packing (RSMP) algorithm is motivated by an observation: the
most problematic issue of packing is where to put big rectangles.
If not properly handled, they may occupy a great number of bins
(in bin packing) or reach considerable piled height (in strip pack-
ing) with many small spaces unused. Hence, it is reasonable to
hypothesize that the best packing position of a rectangle is the
one that maximizes the residual space (RS). In this paper, a RS is
defined in the same way as in Lai and Chan (1997): it is the largest
rectangular area that can be obtained in a free area, where the two
areas have at least one mutual edge. In so doing, the chance that
subsequent rectangles can fit into the space is maximized. The
hypothesis also suggests that it is reasonable to sort the input rect-
angles in an order of big to small (Hopper & Turton, 2001): pack the
big ones before the small ones.
Guided by the hypothesis, RSMP first orients each input rectan-
gle so that its height is not longer than its width; then creates three
sequences: height descending (break a tie by descending width),
width descending (break a tie by descending height) and area
descending (a tie is left as is). The sequences are tested for packing
and the best result is chosen as the solution. During the processing
of each rectangle, every possible packing position is tested to gen-
erate a series of RSs. The position that results in the largest RS is
chosen as the final decision. If there is a tie, i.e. two positions pro-
ducing the same largest RS, the final decision will be based on the
comparison of the second largest RS; so on and so forth. This com-
parison strategy is the RSMP policy.

Superficially, the policy of RSMP seems to have little difference
from packing a rectangle in the smallest suitable space (Gonçalves,
2007); nevertheless, the example shown in Fig. 1 illustrates that
the two strategies produce quite different results. As can be seen,
RSs may overlap; thereby a rectangle packed in the smallest space
may occupy part of a larger space and break it into smaller pieces.
RSMP examines all possible packing positions and takes the one
that ensures the largest RS.

Computationally, RSMP has to keep track of all RSs and to per-
form multiple tests to find the packing position of each rectangle.
The time and space overhead must be carefully managed in order
to achieve an efficient algorithm. The proposed implementation
consists of the following steps for bin packing. Few modifications
are needed for strip packing as will be described later.
1
 Preprocessing: create three input sequences. For each
sequence, run RSMP as follows.
2
 Initialize an area-descending RS list with one element: a
RS of the bin size.
3
 For each rectangle, find the best packing position. A
rectangle larger than the bin is discarded.
3.1
 Find the smallest suitable RS to pack the rectangle. If not
found, a new RS equal to an empty bin is added to the
front of the list.
3.2
 Test all suitable RSs, from the smallest to the largest. For
each RS, try packing the rectangle in eight configurations
(4 corners � 2 orientations). Keep track of the best
packing position based on the RSMP policy.
3.3
 Update the list based on the best packing position.
3.1. Difference process (DP)

RSMP applies DP (Lai & Chan, 1997) to generate RSs from a free
space partly occupied by a rectangle. Fig. 2 illustrates this funda-
mental process, repeatedly used in step 3. A RS is rectangular, with

x1 x2

y3

y1 X

Y

(a)

y2

x1 2x 3x

y2

y1 X

Y y3

(b) x1 x2

y4

y2

y1

Y

y3

(c)
X

P

P

P

x3

Fig. 2. Examples of RSs produced by different relative positions of a free space (dark
solid frame) and a rectangle (gray). (a) A rectangle occupying one side of the free
space generates one RS. (b) A rectangle packed at a corner of the free space
generates two RSs. (c) A rectangle partly overlapping one side of the free space
generates three RSs. This situation may occur due to positions of the packed
rectangles, labeled by P.

Table 1
Data structure of the current best packing position of a rectangle.

RSp RS to pack a rectangle
Conf. Packing configuration (conf. 1–8)
RSl The largest affected RS in the RS list
Arra An array of descending RS area

Y. Wang, L. Chen / Expert Systems with Applications 42 (2015) 3297–3305 3299
coordinates determined by those of the free space and the rectan-
gle. Depending on the situation, one, two or three RSs may be pro-
duced and they can overlap each other.
RSs unaffected RS of a testl
3.2. Find the best packing position

Step 3 is the key to RSMP. The RS list is maintained in
area-descending order throughout the process.

Step 3.1: the smallest suitable RS in the list for an input rectan-
gle can be located quickly. First, a binary search for the rectangle’s
area in the list gives a RS with an equal or larger area. Then, from
this RS to the front of the list (from small to big RSs), locate the
smallest one that can accommodate the rectangle.

Step 3.2: from the located RS to the front of the list, each RS is
tested to pack the rectangle in eight configurations: the original
and rotated rectangle in four corners, as shown in Fig. 3. The test
of each configuration involves finding all RSs affected (partly occu-
pied) by the rectangle, calculating the generated new RSs by DP,
and creating a temporary list merging the new ones with those
in the RS list unaffected by the rectangle. The temporary list is
compared with that produced by the current best packing position,
which is initialized by the first feasible packing position. If a test
result is better based on the RSMP policy, the current best is
replaced.

The computational cost for finding the best packing position of
a rectangle would be considerable if the above procedure was
implemented as described. In practice, several conditions may be
exploited to reduce the cost. First, if a rectangle is a square or it
can fit into a RS in one orientation (original or rotated) only, half
of the tests are needed. Second, if one dimension of a rectangle
and a RS is the same, the number of corners to test is reduced by
half in the corresponding orientation; if both dimensions are the
same, one test suffices.

Third and the most important, a data structure of the current
best result should support two-level comparison. Table 1 shows
a data structure used in this study. RSp and Conf. record the best
packing position. RSl and Arra are for two-level comparison with
a test result. RSl, which may or may not be the same as RSp, is
the largest RS in the list affected by the rectangle. Arra stores, in
(a)

RS

conf. 3

rect. to pack

conf. 4

conf. 1 conf. 2 (b)

RS

co
nf

. 5

co
nf

. 6

co
nf

. 7

co
nf

. 8

rect. to pack

Fig. 3. Eight packing configurations (conf. 1–8) of a rectangle in a RS. The (a)
original and (b) rotated rectangle can be packed at four corners of the RS.
descending order, the area of unaffected RSs smaller than RSl and
those of the generated RSs from the affected ones.

It is time-consuming to calculate Arra; therefore the first-level
comparison is based on RSl, which can be obtained with little com-
putational overhead: search from the front of the RS list for one
that is affected by the rectangle. A difference in RSl would produce
a winner of the comparison and calculation of Arra is saved if the
current best wins (an example shown in Fig. 4). Only when there
is a tie, the second-level comparison based on Arra is required.

Last but not the least, by default, RSs from the smallest suitable
one to the front of the list shall be tested for packing but as the cur-
rent best is updated, the largest RS to test should be set to RSl of the
current best because packing in a RS larger than RSl would defi-
nitely generate a packing worse than the current best considering
the RSMP policy.

The above procedure significantly optimizes the search for the
best packing position of each rectangle.

3.3. Update the RS list

Based on the best packing position, the affected RSs are
removed from the RS list and then generated new RSs are insert
into it. Prior to insertion, each new RS must pass three checks. First,
it must be able to accommodate the smallest input rectangle.
Second, it is not contained in any other new RS. Third, it is not con-
tained in any RS in the list. New RSs that fail on any of the check
can be discarded.

After the list is updated, the next rectangle in the input
sequence is fed into step 3 for processing. The algorithm completes
one sequence when all rectangles are packed. The three sequences
are run in the order of height, width and area descending; the best
result is saved as the solution. In some problems, the optimal solu-
tion is prior known. If so and the result of a sequence is equivalent
to the optimal solution, subsequent sequences are not run.

3.4. An example

Based on the example of Fig. 1(c), this section shows the calcu-
lation of the best packing position of a third rectangle (90 by 30).
The smallest suitable RS is the red one shown in Fig. 5(a). Only
two configurations are feasible, as indicated in Fig. 5(b) and (c).
They are conf. 5 and 7 according to the convention defined in
Fig. 3: the height of the original rectangle is shorter than the width.
RS list
RSs unaffected by
the current best

by a test

RS of the current bestl

Fig. 4. The current best packing position affects a RSl smaller than that affected by a
test packing position. As a result, the maximal different RS is the red one on the left.
It is unaffected by the current best packing position but partly occupied by the test;
hence, the current best is definitely the winner of the comparison and calculation of
Arra of the test is unnecessary.

1
2

(a)

3

co
nf

. 5

1
2

(b)

3

180*190

210*160

90
*2

20 co
nf

. 7

1
2

(c)

3

180*190

210*100

90
*2

20

30
*1

60

Fig. 5. Test of the smallest suitable RS, the red one in (a). Resultant RSs based on (b)
conf. 5 and (c) conf. 7. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

virtual bound

theoretical bound

H 3a

H2

H3b

H1

Fig. 7. A bisection strategy for finding the smallest feasible height of strip packing.

3300 Y. Wang, L. Chen / Expert Systems with Applications 42 (2015) 3297–3305
Conf. 5 is the first feasible packing position and is assigned to the
current best with Arra calculated. Conf. 7 produces the same largest
RS (180⁄190) but a smaller second largest RS; therefore, the cur-
rent best remains to be conf. 5.

The next RS to test is the green one shown in Fig. 5(a). Conf. 1
(Fig. 6(a)) produces a larger maximal RS than conf. 5 of Fig. 5(b).
The current best is updated accordingly. In fact, in this configura-
tion, the largest RS (blue) is not affected; hence, RSl of the current
best is the green one in Fig. 5(a). Conf. 2 (Fig. 6(b)) does not affect
the largest RS either but produces a smaller second largest RS. The
remaining configurations (Fig. 6(c)) affect the blue RS, thereby fail
in the first-level comparison with the current best, while Arra is not
calculated.

The largest RS (blue) in Fig. 5(a) will not be tested for packing
because RSl of the current best (the green RS) is smaller. Any con-
figuration in the blue RS would fail to compete with the current
best. Consequently, the best packing position of the third rectangle
is shown in Fig. 6(a).
3.5. Strip packing

In strip packing, the bin width is fixed while the bin height is
flexible. To adapt the RSMP algorithm described in the previous
section to strip packing, one may set the bin height to a large value,
enough to accommodate all rectangles. The value serves as a vir-
tual bound. In the test of a RS to pack a rectangle, if the top side
of the RS is the virtual bound, the top corners are not tested. The
procedure stays the same as in bin packing.

However, a solution thus obtained is not necessarily the most
space efficient that RSMP can achieve due to the large space
beneath the virtual bound. As that space is the largest RS, rectan-
gles tend to be packed horizontally to maximize it. This prevents
vertical packings that may be more space efficient occasionally.
To deal with the issue, an additional procedure is applied, in which
different bin heights are systemically tested, as illustrated in Fig. 7.
(A similar procedure was described by Zhang et al. (2013).) Assum-
ing that H1 is the piled height obtained using the virtual bound as
the bin height, the next bin height to test is H2, halfway between H1

and a theoretical bound (sum of all rectangles’ area divided by the
bin width). From this stage onwards, the virtual bound is no longer
1
2

(a)

3

conf. 1

210*190

30
*2

50

1
2

(b)

3

conf. 2

21
0*

19
0

30
*2

20

1
2

(c)

3

co
nf

. 5

co
nf

. 6
co

nf
. 8

co
nf

. 7

conf. 3, 4

Fig. 6. Test of the green RS in Fig. 5(a). Resultant RSs based on (a) conf. 1 and (b)
conf. 2. The largest RS (blue) is not affected. (c) Confs. 3–8 affect the largest RS. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
applicable and all four corners are tried in a RS test. If the input
rectangles can be packed in one bin of height H2 based on any of
the three sequences, H2 is a better solution than H1; then RSMP
is run again using H3a as the bin height, halfway between H2 and
the theoretical bound. On the contrary, if the rectangles cannot
be packed in one bin, H3b is set as the bin height, halfway between
H1 and H2. The process continues until to a predetermined resolu-
tion and the smallest height that is able to accommodate all
rectangles is the final solution of the strip packing.
4. Results and discussions

The proposed RSMP algorithm has been tested on various
randomly generated and widely used benchmark datasets. The
randomly generated datasets contribute to the understanding of
the relative performance of RSMP with respect to the three input
sequences (Section 4.1). The benchmark datasets are used to com-
pare RSMP with existing algorithms in terms of bin packing
(Section 4.2), strip packing (Section 4.3), and large-scale problems
(Section 4.4). Results of the existing algorithms are obtained from
the published papers and are valid for direct comparison: 2D, non-
guillotine, rotation-allowed, rectangle-packing with no other con-
straint. Analysis of computational cost of RSMP is given in Section
4.5. Our implementation of RSMP is realized in C++ and the results
were generated on a HP Pavilion desktop (Intel Core i7, 3.4 GHz
CPU and 8 GB RAM).

4.1. Performance with respect to sequence

Randomly generated rectangles are packed by RSMP based on
the height, width and area-descending sequences. A typical dataset
is created using the following parameters while other datasets
show similar results. In bin packing, the bin width, W, is fixed to
100; the bin height, H, is varied from 100 to 1000. The number of
rectangles, n, increases with H, from 100 to 1000. In strip packing,
the bin width is fixed to 100 and n varies from 50 to 500. Among
the input rectangles to bin packing, 80% have their width in
[2 W/3, W] and height in [1, W/2] (group 1), 10% have width in
[W/2, W] and height in [W/2, W] (group 2), and the rest 10% have
width in [1, W/2] and height in [1, W/2] (group 3) randomly gener-
ated. They compose a diverse collection of long bars, big and small
near-square rectangles. In striping packing, the ratios of groups 1
and 3 are swapped.

Fig. 8 shows the average results over 5000 instances. In bin
packing (Fig. 8(a)), all three sequences are able to produce a good
proportion of the best solution because the evaluation metric is
rounded off to an integer number of bins consumed. In strip pack-
ing (Fig. 8(b)), the height-descending sequence outperforms the
other two in producing a lower piled height. Based on visual
inspection of the packing patterns, we believe that the advantage
is due to the relatively uniform size of consecutive rectangles in

Sequence
 height width area

Pe
rc

en
ta

ge
 o

f b
es

t s
ol

ut
io

n

0
10
20
30
40
50
60
70
80
90

100

W:H = 1: 1, n = 100
W:H = 1: 2, n = 200
W:H = 1: 5, n = 500
W:H = 1:10, n = 1000

(a) Sequence
 height width area

Pe
rc

en
ta

ge
 o

f b
es

t s
ol

ut
io

n
0

10
20
30
40
50
60
70
80
90

100

(b)

n = 50
n = 100
n = 200
n = 500

Fig. 8. (a) Bin-packing and (b) strip-packing results over 5000 instances. The gray
and color bars indicate respectively the best and the unique best solution of the
three sequence trials. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Y. Wang, L. Chen / Expert Systems with Applications 42 (2015) 3297–3305 3301
the height-descending sequence. As mentioned in Section 3, a pre-
processed rectangle has a shorter height than width; therefore,
height descending roughly ensures area and width descending. In
contrast, the area-descending sequence has weaker constraint on
the height and width; rectangles of quite different aspect ratio
may be ordered closely. Consequently, more tiny unusable RSs
are generated. The width-descending sequence bears similar dis-
advantage as it only weakly constrains the area and height.

Despite the fact that the height-descending sequence is the best
on average, in some situations, especially when n is small, the
other two sequences can produce better solutions, as indicated
by the color bars in Fig. 8. For this reason, RSMP incorporates all
three sequences to find the best solution.
4.2. Bin packing results

Two groups of bin packing algorithms are compared. In the first
group, four algorithms (TS, UTS, SGA and MXGA) are compared
with RSMP based on bin packing datasets given in Berkey and
Wang (1987), Martello and Vigo (1998). The optimal solution of
each instance is unknown. Results of TS are obtained from Lodi
et al. (1999) and those of UTS, SGA and MXGA are from Bennell
et al. (2013). The version of UTS compared is UTSBFB proposed by
Bennell et al. (2013). Table 2 shows the performance of the algo-
rithms on each data class, consisting of several instances. TS and
UTS produce one and three best solutions among the ten classes
respectively. SGA does not produce any best solution. MXGA and
RSMP have achieved five best solutions each.

In terms of the processing time on each instance, TS was set to
run for 60 s (Lodi et al., 1999) (implemented in Fortran 77, test
Table 2
Bin packing results of TS, UTS, SGA, MXGA and RSMP. A number indicates the average
ratio of the number of packed bins and the lower bound (Dell’Amico et al., 2002), the
smaller the number, the better the performance. A bold number indicates the best
solution of each class.

Class TS UTS SGA MXGA RSMP

I 1.044 1.039 1.039 1.034 1.046
II 1.026 1.020 1.073 1.027 1.020
III 1.074 1.075 1.087 1.068 1.066
IV 1.040 1.033 1.053 1.047 1.033
V 1.062 1.079 1.073 1.059 1.062
VI 1.104 1.083 1.110 1.093 1.067
VII 1.086 1.093 1.103 1.080 1.113
VIII 1.088 1.094 1.097 1.079 1.105
IX 1.008 1.007 1.008 1.007 1.007
X 1.068 1.072 1.080 1.072 1.079
machine: Silicon Graphics INDY R10000sc, 195 MHz CPU); UTS,
SGA and MXGA were set to run for 120 s (Bennell et al., 2013)
(implemented in C++, test machine: Pentium 4, 2 GHz CPU, 2 GB
RAM); RSMP only needed about 1 ms (implemented in C++, test
machine: Intel Core i7, 3.4 GHz CPU, 8 GB RAM). Despite the fact
that RSMP was executed on a faster computer, the drastic differ-
ence in computational speed suggests an advantage of RSMP in
efficiency.

In the second group, three algorithms (HBP (Boschetti &
Mingozzi, 2003), ATS-BP (Harwig, Barnes, & Moore, 2006) and
IMA (Hayek et al., 2008)) are compared with RSMP based on bin
packing datasets given in Berkey and Wang (1987), Martello and
Vigo (1998). Each class of the dataset has five groups and each
group has 10 instances. Results shown in Table 3 suggests that
RSMP consumes slightly more bins on average than the other algo-
rithms. This is largely due to the fact that the number of rectangles
is small; so by testing many sequences HBP, ATS-BP and IMA pro-
duce better results than RSMP, which tests three sequences only. In
terms of the average processing time, HBP took 1824.2 ms (Intel
Pentium 3, 933 MHz CPU), ATS-BP took 70210 ms (CPU specifica-
tion unavailable), IMA took 318.6 ms (Intel Pentium 4, 2.66 GHz
CPU), and RSMP took 2.5 ms (Intel Core i7, 3.4 GHz CPU).

4.3. Strip packing results

Several algorithms are compared with RSMP based on strip
packing datasets given in Hopper and Turton (2001), Burke et al.
(2004). The optimal solution of each instance is known. Results
of GA + BLF and SA + BLF are obtained from Burke et al. (2004),
those of BF + SA, BF + GA, BF + TS are from Burke et al. (2006), those
of IDBS are from Wei et al. (2011), those of BBF and BBFM are from
Özcan et al. (2013), and those of BSHA are from Zhang et al. (2013).

Table 4 shows the results of the algorithms and Fig. 9 is a sum-
mary of the performance. The metric in Fig. 9 is the average extra
height over all instances; while extra height is the difference
between the piled height and the optimal solution. Excluding the
optimal solution values in the plot highlights the difference among
the algorithms. RSMP outperforms GA + BLF and SA + BLF, is com-
parable to BF + SA, BF + GA, BF + TS and BBF, and is not as good as
IDBS, BBFM and BSHA. BBFM (Özcan et al., 2013) incorporates a
large number of (6912) policy combinations while BSHA (Zhang
et al., 2013) introduces randomness in sequences. Their perfor-
mance comes with a noticeable overhead in running time, as
shown in Table 5. IDBS reached optimal solution in all instances
according to Wei et al. (2011); it was set to run for 100 s; on aver-
age the optimal solution appeared at 310 ms after start. (It is not
included in Table 5 as no published data are available for direct
comparison.) Although it is difficult to ascertain to what extent dif-
ferent hardware platforms (Table 5) influence the running time,
RSMP appears to be more time-efficient than BBFM and BSHA.
RSMP is about twice faster than BBF with slightly better perfor-
mance (Fig. 9). The other algorithms (GA + BLF, SA + BLF, BF + SA,
BF + GA and BF + TS) were tested on much older machines and
the published results are not directly comparable in time
efficiency.

4.4. Large-scale problems

The efficacy and efficiency of RSMP are best demonstrated in
large-scale problems. BL by Zhang et al. (2013), BBF (As�ık &
Özcan, 2009), BSHA (Zhang et al., 2013) and RSMP are compared
based on the large-scale datasets created by Pinto and Oliveira
(2005). The optimal solution of each instance is known. As shown
in Table 6, RSMP produces the best results except for the first
instance of 50 rectangles; it has achieved the optimal solution in
all instances for n larger than 100.

Table 3
Bin packing results of HBP, ATS-BP, IMA and RSMP. A number indicates the average number of packed bins used in each group (10 instances). The smaller is the number, the better
is the performance.

Class n HBP ATS-BP IMA RSMP Class n HBP ATS-BP IMA RSMP

1 20 6.6 6.6 6.6 6.7 6 20 1.0 1.0 1.0 1.0
40 12.9 12.9 12.9 13.1 40 1.7 1.6 1.7 1.8
60 19.5 19.5 19.5 19.6 60 2.1 2.1 2.1 2.1
80 27.0 27.0 27.0 27.1 80 3.0 3.0 3.0 3.0
100 31.3 31.4 31.3 31.4 100 3.4 3.4 3.2 3.3
Avg. 19.46 19.48 19.46 19.58 Avg. 2.24 2.22 2.20 2.24

2 20 1.0 1.0 1.0 1.0 7 20 5.2 5.2 5.2 5.4
40 1.9 1.9 1.9 2.0 40 10.5 10.4 10.4 10.7
60 2.5 2.5 2.5 2.5 60 15.1 14.6 14.7 15.3
80 3.1 3.1 3.1 3.1 80 21.8 21.3 21.2 21.9
100 3.9 3.9 3.9 3.9 100 25.9 25.5 25.3 26.2
Avg. 2.48 2.48 2.48 2.50 Avg. 15.70 15.40 15.36 15.90

3 20 4.7 4.7 4.7 4.7 8 20 5.3 5.3 5.3 5.4
40 9.4 9.4 9.4 9.5 40 10.5 10.4 10.4 10.7
60 13.5 13.6 13.5 13.6 60 15.4 15.1 15.0 15.5
80 18.4 18.6 18.4 18.6 80 21.3 20.8 20.8 21.4
100 22.2 22.3 22.2 22.2 100 26.3 26.0 25.7 26.4
Avg. 13.64 13.72 13.64 13.72 Avg. 15.76 15.52 15.44 15.88

4 20 1.0 1.0 1.0 1.0 9 20 14.3 14.3 14.3 14.3
40 1.9 1.9 1.9 1.9 40 27.5 27.6 27.5 27.5
60 2.5 2.4 2.5 2.5 60 43.5 43.5 43.5 43.5
80 3.2 3.2 3.1 3.2 80 57.3 57.3 57.3 57.3
100 3.8 3.8 3.7 3.7 100 69.3 69.3 69.3 69.3
Avg. 2.48 2.46 2.44 2.46 Avg. 42.38 42.40 42.38 42.38

5 20 5.9 5.9 5.9 5.9 10 20 4.1 4.1 4.1 4.2
40 11.5 11.4 11.4 11.5 40 7.3 7.3 7.3 7.3
60 17.5 17.5 17.4 17.5 60 10.0 9.9 10.1 10.0
80 24.0 23.9 23.9 24.0 80 12.8 12.8 12.8 13.0
100 28.0 28.0 27.9 28.3 100 16.0 15.9 15.8 16.1
Avg. 17.38 17.34 17.30 17.44 Avg. 10.04 10.00 10.02 10.12

Table 4
Strip packing results of several algorithms. The numbers under each algorithm are the piled height and those under Opt. H are the theoretical optimal solution. ‘‘–’’ indicates that
packing cannot be finished in 106 s. IDBS reached optimal solution in all instances (Wei et al., 2011); for simplicity, it is not included in the table.

Inst. n Opt. H GA + BLF SA + BLF BF + SA BF + GA BF + TS BBF BBFM BSHA RSMP

C1P1 16 20 20 20 20 20 20 21 20 20 21
C1P2 17 20 21 21 20 21 21 21 21 20 21
C1P3 16 20 20 20 20 20 20 21 21 20 21
C2P1 25 15 16 16 16 16 16 16 16 15 16
C2P2 25 15 16 16 16 16 16 17 15 15 16
C2P3 25 15 16 16 16 16 16 16 16 15 16
C3P1 28 30 32 32 31 31 31 32 30 30 31
C3P2 29 30 32 32 31 32 32 33 31 30 31
C3P3 28 30 32 32 31 31 31 33 32 30 31
C4P1 49 60 64 64 61 62 62 62 62 60 61
C4P2 49 60 63 64 61 62 62 63 61 60 61
C4P3 49 60 62 63 61 62 61 62 61 60 61
C5P1 73 90 95 94 91 92 92 91 91 90 92
C5P2 73 90 95 95 91 92 92 92 91 90 91
C5P3 73 90 95 95 92 92 92 92 91 90 92
C6P1 97 120 127 127 122 122 122 123 121 120 122
C6P2 97 120 126 126 121 121 121 123 122 120 121
C6P3 97 120 126 126 122 122 122 123 121 120 122
C7P1 196 240 255 255 244 245 245 243 242 240 243
C7P2 197 240 251 253 244 244 244 242 242 240 243
C7P3 196 240 254 255 245 245 245 243 241 240 242

N1 10 40 40 40 40 40 40 40 40 40 40
N2 20 50 51 52 50 50 50 52 50 50 53
N3 30 50 52 52 51 52 51 52 52 50 52
N4 40 80 83 83 82 83 83 82 82 80 83
N5 50 100 106 106 103 104 103 103 102 100 106
N6 60 100 103 103 102 102 102 102 101 100 102
N7 70 100 106 106 104 104 105 106 105 101 102
N8 80 80 85 85 82 82 82 82 81 80 82
N9 100 150 155 155 152 152 152 152 151 150 154
N10 200 150 154 154 152 152 152 151 151 150 152
N11 300 150 155 155 153 153 153 151 150 150 152
N12 500 300 313 312 306 306 306 302 302 300 305
N13 3152 960 – – 964 964 964 964 960 960 962

3302 Y. Wang, L. Chen / Expert Systems with Applications 42 (2015) 3297–3305

AHSBFBBST+FBAS+FBFLB+AG

Av
er

ag
e

ex
tra

 h
ei

gh
t

 0

 1

 2

 3

 4

 5 SA+BLF

BF+GA

BBFM

RSMP

IDBS

Fig. 9. Summary of the performance of the algorithms in Table 4 and that of IDBS.
The average extra height of IDBS is 0 and that of BSHA is 0.03.

Table 5
Processing time of BBF, BBFM, BSHA and RSMP in millisecond spent on datasets C1–
C7 in Table 4.

Class n BBF BBFM BSHA RSMP

C1 16, 17 3 178 23 1
C2 25 6 381 93 2
C3 28, 29 7 523 1163 5
C4 49 17 2248 2583 6
C5 73 29 4858 4157 9
C6 97 45 8707 12683 14
C7 196, 197 126 38713 101613 66

Language – C++ C++
CPU Intel i7 – Intel i7
CPU (GHz) 3.2 2.6 3.4
RAM (GB) 16 0.5 8

Table 6
Results of large-scale strip packing problems. The optimal solution is known to be 600
for all instances. The bold numbers indicate the best solutions achieved among the
four algorithms.

n BL BBF BSHA RSMP

50 674 643 601 612
100 679 645 610 608
500 692 618 600 600
1000 690 600 600 600
5000 687 600 600 600
10,000 681 600 600 600
15,000 660 600 600 600

Table 7
Processing time of BBF, BSHA and RSMP in millisecond tested on the large-scale
datasets.

n BBF BSHA RSMP

50 250 112480 10
100 610 1329120 37
500 6230 12680 12
1000 17870 330 21
5000 413940 3520 87
10,000 1780910 12110 234
15,000 4237500 26510 226

Language Java C++ C++
CPU Intel Core 2 – Intel i7
CPU (GHz) 1.86 2.6 3.4
RAM (GB) 2 0.5 8

Number of rectangles
0 50 100 150 200

C
ou

nt

0

200

400

600
DP
RS

(a)

Number of rectangles
0 50 100 150 200

C
ou

nt

0

50

100

150
(b)

DP
RS

Number of rectangles
0 100 200 300 400 500

C
ou

nt

0

1000

2000

(c)
DP
RS

Number of rectangles
0 100 200 300 400 500

C
ou

nt

0

50

100

150

200

250

300

350(d)
DP
RS

Fig. 10. The number of DP required to determine the best packing position of the
nth rectangle and the number of RS generated after packing the nth rectangle. One
DP is the partition of one RS by a rectangle, as illustrated in Fig. 2. (a) 200 input
rectangles, packed by the brute force implementation. (b) 200 input rectangles,
packed by the efficient implementation. (c) 500 input rectangles, packed by the
brute force implementation. (d) 500 input rectangles, packed by the efficient
implementation, in which the number of DP required for each rectangle does not
exceed 63.

Y. Wang, L. Chen / Expert Systems with Applications 42 (2015) 3297–3305 3303
Table 7 shows the algorithms’ processing time for each
instance. (The time of BL was not provided in Zhang et al.
(2013).) The time of BBF increases with n but that of BSHA does
not. BSHA may spend a long time even on a small-scale problem.
The time of RSMP is in general related to n but for the instance
n ¼ 100, RSMP spent 37 ms, longer than that for n ¼ 500 and
1000. We found that when n ¼ 100 the strip packing procedure
(Section 3.5) ran several times before settling on the final solution,
whereas for n ¼ 500 and 1000, the optimal solution was found in
the initial run; hence, less time was consumed. Overall, RSMP is
clearly faster than BBF and BSHA.

Based on the comparisons, one can see that RSMP is able to pro-
duce space-efficient solutions to various packing problems and is
faster than many advanced algorithms.
4.5. Computational cost

The most time-consuming step in RSMP is the second-level
comparison of RS, which requires the calculation of Arra (Section
3.2). We compare the proposed efficient implementation with
one that searches for the best packing position of a rectangle by
brute force, i.e. all feasible RSs are tried, all eight configurations
of each RS are tested, and Arra is always calculated by DP. The
results are shown in Fig. 10, which is the worst case of 100 ran-
domly generated input rectangle sequences. The worst-case metric
is the number of RS generated in total. While the results are based
on a particular strip packing dataset, other datasets show similar
trend.

The number of RS generated (red line) is the same for both
implementations, suggesting identical results. Toward the end of
a packing sequence, be it 200 or 500 input rectangles, the number
of RS stops increasing. This is due to the fact that small rectangles
are packed at the end of a sequence and they generate even smaller
RSs. A RS that cannot accommodate the smallest rectangle is
discarded; hence, the number of RS tends to drop.

The number of DP required (blue line) is a direct indication of
the computational cost. As can be seen in Fig. 10(a) and (c), the
number of DP in the brute force implementation increases with
the number of RS. Toward the end of the packing sequence, the
number of DP increases dramatically because small rectangles
can be packed in a great number of RSs and many tests are per-
formed. In contrast, the number of DP in the efficient implementa-
tion does not increase with the number of RS (Fig. 10(b) and (d)),
owing to the fact that redundant calculation of Arra is avoided.

Number of rectangles
0 100 200 300 400 500

C
ou

nt

0

50

100

150

200

250

300

350
DP
RS

(a)

Number of rectangles
0 100 200 300 400 500

C
ou

nt

0

50

100

150

200

250

300

350
DP
RS

(b)

Fig. 11. Results based on the same dataset as that used to produce Fig. 10(d), except
that the width of the bin in (a) is halved and that in (b) is doubled. The number of
DP required for each rectangle does not exceed 36 in (a) and 124 in (b).

3304 Y. Wang, L. Chen / Expert Systems with Applications 42 (2015) 3297–3305
There is an upper bound of the number of DP required for each
rectangle in the efficient implementation. The upper bound
increases with the width of a strip bin, as shown in Fig. 11. A small
width produces a low upper bound (Fig. 11(a)) because in a narrow
bin the probability that a rectangle overlaps many RSs is relative
small. In contrast, such probability is higher in a wider bin of a lar-
ger width (Fig. 11(b)). What is important is that the upper bound
exists and it is not related to the number of RS.

In a worst-case scenario, each rectangle affects several RSs as
they can overlap and each affected RS may be partitioned into
multiple RSs; therefore, the number of RSs can reach n2, where
n is the number of input rectangles. The time complexity for pro-
cessing one rectangle is Oðn4Þ because a rectangle may be tested
in every RS [Oðn2Þ] and each test would involve DP with all RSs
[Oðn2Þ]. The overall time complexity is Oðn5Þ. In an average-case
scenario, each rectangle affects a limited number of RSs; the
number of RSs is linear to n as shown by the previous experi-
ment. In addition, there are two situations due to the upper
bound discussed in the previous paragraph. Let c be the upper
bound of the number of DP needed to find the best packing posi-
tion of each rectangle. If time spent on c is larger than that spent
in finding the smallest RS to pack a rectangle [binary search
Oðlog nÞ], the average-case time complexity is OðnÞ because pro-
cessing pertaining to each rectangle is bounded in constant time;
otherwise, the time complexity is Oðn log nÞ. Results in Table 7
suggest that these instances belong to the first situation. The sec-
ond situation may occur only if n is extremely large. All results on
timing of RSMP include preprocessing (step 1), which is not a
time-consuming step; tests show that it does not take more than
1% of the total processing time.
5. Conclusions

A 2D rectangle-packing algorithm is proposed based on a single
heuristic policy: the residual space after packing each rectangle
should be maximized. To realize the policy, a rectangle is tested
for packing in four corners at two orientations of several candidate
residual spaces (RSs). The best configuration based on the RSMP
policy is chosen as the packing position. The algorithm involves
the generation of a series of RSs based on a difference process
(DP) and the comparison of the RSs based on their areas. An effi-
cient implementation is described to take advantage of useful
information collected along processing so as to minimize the
computation.

The performance of RSMP has been compared with state-
of-the-art algorithms. Results show that RSMP is comparable to
existing algorithms in small-scale problems but is much faster.
For large-scale problems, RSMP seems to be the best both in space
efficiency and in computational speed. The former is owing to the
effective policy, which is well exhibited in the long run, and the
latter is owing to the efficient implementation.
Several topics might be meaningful for future research investi-
gation. First, the concept of RS, DP and the principle of RSMP have
direct extensions in 3D; efficient implementation of RSMP in 3D
packing problems can be investigated. Second, the algorithm pro-
posed in this paper assumes a rectangular bin and RSs are gener-
ated by DP; direct generation of RSs from a polygonal bin can be
investigated as in some applications, the bins are not rectangular.
Third, increasing the number of trial sequences in general leads
to better solutions; sequence-generation strategies can be investi-
gated based on RSMP. Last, in irregular item packing problems, it is
also reasonable to maximize the residual space during packing;
hence, a similar algorithm for packing irregular items can be
investigated.
Acknowledgments

This work was supported by the International Design Center of
Singapore University of Technology and Design (Grant ID:
IDD31200102 and SREP11013).
References

Alvarez-Valdés, R., Parreño, F., & Tamarit, J. M. (2005). A grasp algorithm for
constrained two-dimensional non-guillotine cutting problems. Journal of the
Operational Research Society, 56(4), 414–425.

As�ık, Ö. B., & Özcan, E. (2009). Bidirectional best-fit heuristic for orthogonal
rectangular strip packing. Annals of Operations Research, 172(1), 405–427.

Baker, B. S., Coffman, E. G., Jr, & Rivest, R. L. (1980). Orthogonal packings in two
dimensions. SIAM Journal on Computing, 9(4), 846–855.

Beasley, J. E. (1985). An exact two-dimensional non-guillotine cutting tree search
procedure. Operations Research, 33(1), 49–64.

Belov, G., Scheithauer, G., & Mukhacheva, E. (2008). One-dimensional heuristics
adapted for two-dimensional rectangular strip packing. Journal of the
Operational Research Society, 59(6), 823–832.

Bennell, J. A., Lee, L. S., & Potts, C. N. (2013). A genetic algorithm for two-
dimensional bin packing with due dates. International Journal of Production
Economics, 145(2), 547–560.

Berkey, J. O., & Wang, P. Y. (1987). Two-dimensional finite bin-packing algorithms.
Journal of the Operational Research Society, 38(5), 423–429.

Boschetti, M. A., & Mingozzi, A. (2003). The two-dimensional finite bin packing
problem. Part II: New lower and upper bounds. Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, 1, 135–147.

Burke, E. K., Kendall, G., & Whitwell, G. (2006). Metaheuristic enhancements of the
best-fit heuristic for the orthogonal stock cutting problem. Tech. Rep. NOTTCS-TR-
SUB-0605091028-4370. University of Nottingham.

Burke, E. K., Kendall, G., & Whitwell, G. (2004). A new placement heuristic for the
orthogonal stock-cutting problem. Operations Research, 52(4), 655–671.

Chazelle, B. (1983). The bottomn-left bin-packing heuristic: An efficient
implementation. IEEE Transactions on Computers, 100(8), 697–707.

Dagli, C. H., & Poshyanonda, P. (1997). New approaches to nesting rectangular
patterns. Journal of Intelligent Manufacturing, 8(3), 177–190.

Dell’Amico, M., Martello, S., & Vigo, D. (2002). A lower bound for the non-oriented
two-dimensional bin packing problem. Discrete Applied Mathematics, 118(1),
13–24.

Dowsland, K. A. (1993). Some experiments with simulated annealing techniques for
packing problems. European Journal of Operational Research, 68(3), 389–399.

Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of
Operational Research, 44(2), 145–159.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-completeness (Vol. 174). Freeman New York.

Gonçalves, J. F. (2007). A hybrid genetic algorithm-heuristic for a two-dimensional
orthogonal packing problem. European Journal of Operational Research, 183(3),
1212–1229.

Harwig, J. M., Barnes, J., & Moore, J. T. (2006). An adaptive tabu search approach for
2-dimensional orthogonal packing problems. Military Operations Research,
11(2), 5–26.

Hayek, J. E., Moukrim, A., & Negre, S. (2008). New resolution algorithm and
pretreatments for the two-dimensional bin-packing problem. Computers &
Operations Research, 35(10), 3184–3201.

Hopper, E., & Turton, B. C. H. (2001). An empirical investigation of meta-heuristic
and heuristic algorithms for a 2d packing problem. European Journal of
Operational Research, 128(1), 34–57.

Jakobs, S. (1996). On genetic algorithms for the packing of polygons. European
Journal of Operational Research, 88(1), 165–181.

Lai, K. K., & Chan, J. W. M. (1997). Developing a simulated annealing algorithm for
the cutting stock problem. Computers & industrial engineering, 32(1), 115–127.

Leung, S. C. H., & Zhang, D. (2011). A fast layer-based heuristic for non-guillotine
strip packing. Expert Systems with Applications, 38(10), 13032–13042.

http://refhub.elsevier.com/S0957-4174(14)00799-4/h0005
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0005
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0005
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0010
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0010
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0010
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0015
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0015
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0020
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0020
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0025
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0025
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0025
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0030
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0030
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0030
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0035
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0035
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0040
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0040
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0040
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0050
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0050
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0055
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0055
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0060
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0060
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0065
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0065
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0065
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0070
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0070
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0075
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0075
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0080
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0080
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0085
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0085
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0085
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0090
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0090
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0090
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0095
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0095
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0095
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0100
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0100
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0100
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0105
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0105
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0110
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0110
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0115
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0115

Y. Wang, L. Chen / Expert Systems with Applications 42 (2015) 3297–3305 3305
Liu, D., & Teng, H. (1999). An improved BL-algorithm for genetic algorithm of the
orthogonal packing of rectangles. European Journal of Operational Research,
112(2), 413–420.

Lodi, A., Martello, S., & Vigo, D. (1999). Heuristic and metaheuristic approaches for a
class of two-dimensional bin packing problems. INFORMS Journal on Computing,
11(4), 345–357.

Lodi, A., Martello, S., & Vigo, D. (2004). Tspack: A unified tabu search code for multi-
dimensional bin packing problems. Annals of Operations Research, 131, 203–213.

Martello, S., & Vigo, D. (1998). Exact solution of the two-dimensional finite bin
packing problem. Management Science, 44(3), 388–399.

Özcan, E., Kai, Z., & Drake, J. H. (2013). Bidirectional best-fit heuristic considering
compound placement for two dimensional orthogonal rectangular strip
packing. Expert Systems with Applications, 40, 4035–4043.
Pinto, E., Oliveira, & J. F. (2005). Algorithm based on graphs for the non-guillotinable
two-dimensional packing problem. In Second ESICUP meeting. Southampton.

Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting
and packing problems. European Journal of Operational Research, 183(3),
1109–1130.

Wei, L., Oon, W.-C., Zhu, W., & Lim, A. (2011). A skyline heuristic for the 2d
rectangular packing and strip packing problems. European Journal of Operational
Research, 215(2), 337–346.

Zhang, D., Wei, L., Leung, S. C. H., & Chen, Q. (2013). A binary search heuristic
algorithm based on randomized local search for the rectangular strip-packing
problem. INFORMS Journal on Computing, 25(2), 332–345.

http://refhub.elsevier.com/S0957-4174(14)00799-4/h0120
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0120
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0120
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0125
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0125
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0125
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0130
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0130
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0135
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0135
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0140
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0140
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0140
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0150
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0150
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0150
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0155
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0155
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0155
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0160
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0160
http://refhub.elsevier.com/S0957-4174(14)00799-4/h0160

	Two-dimensional residual-space-maximized packing
	1 Introduction
	2 Related work
	3 Principle
	3.1 Difference process (DP)
	3.2 Find the best packing position
	3.3 Update the RS list
	3.4 An example
	3.5 Strip packing

	4 Results and discussions
	4.1 Performance with respect to sequence
	4.2 Bin packing results
	4.3 Strip packing results
	4.4 Large-scale problems
	4.5 Computational cost

	5 Conclusions
	Acknowledgments
	References

